Zobrazeno 1 - 10
of 176
pro vyhledávání: '"distinguishing number"'
Autor:
Saeid Alikhani, Samaneh Soltani
Publikováno v:
Journal of Mahani Mathematical Research, Vol 12, Iss 2, Pp 411-423 (2023)
The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has an vertex labeling with $d$ labels that is preserved only by the trivial automorphism. A list assignment to $G$ is an assignment $L = \{L(v)\}_{v\in V (G)}$ of
Externí odkaz:
https://doaj.org/article/40991a925e334c6f90d018c0e622fc3f
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Saeid Alikhani, Samaneh Soltani
Publikováno v:
Electronic Journal of Graph Theory and Applications, Vol 9, Iss 1, Pp 77-85 (2021)
The distinguishing index D'(G) of a graph G is the least integer d such that G has an edge labeling with d labels that is preserved only by a trivial automorphism. The Kronecker product G x H of two graphs G and H is the graph with vertex set V(G) x
Externí odkaz:
https://doaj.org/article/a5f4d263b3d0485896f530ad03615474
Autor:
S. Alikhani, S. Soltani
Publikováno v:
Journal of Algebraic Systems, Vol 8, Iss 2, Pp 209-217 (2021)
The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has an vertex labeling with $d$ labels that is preserved only by a trivial automorphism. The minimum size of a label class in such a labeling of $G$ with $D(G) = d
Externí odkaz:
https://doaj.org/article/3668dcb2a7824b2e9a07c96387463069
Autor:
Omid Khormali
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Vol 16, Iss 2, Pp 172-181 (2019)
The distinguishing number of graphs is generalized in two directions by Cheng and Cowen (local distinguishing number) and Collins and Trenk (Distinguishing chromatic number). In this paper, we define and study the local distinguishing chromatic numbe
Externí odkaz:
https://doaj.org/article/5a2c94ca14f44b23ac6cfe014b811d05
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 40, Iss 3, Pp 875-884 (2020)
The distinguishing number (index) D(G) (D′ (G)) of a graph G is the least integer d such that G has an vertex (edge) labeling with d labels that is preserved only by the trivial automorphism. It is known that for every graph G we have D′ (G) ≤
Externí odkaz:
https://doaj.org/article/89de7e86ea3f40d49c99535268227aa4
Autor:
Saeid Alikhani, Samaneh Soltani
Publikováno v:
پژوهشهای ریاضی, Vol 6, Iss 1, Pp 109-118 (2020)
Introduction The graph is a mathematical model for a discrete set whose members are interlinked in some way. The members of this collection can be the different parts of the earth and the connections between them are bridges that tie them together (l
Externí odkaz:
https://doaj.org/article/90a6645985654b0c988c3d9bf1cdcf9f
Autor:
Saeid Alikhani, Samaneh Soltani
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Vol 17, Iss 1, Pp 1-6 (2020)
The distinguishing number (index) () of a graph is the least integer such that has a vertex labeling (edge labeling) with labels that is preserved only by a trivial automorphism. A graphoidal cover of is a collection of (not necessarily open) paths i
Externí odkaz:
https://doaj.org/article/c26414fc953d450a98cc6b83c58c7a5e
Autor:
Saeid Alikhani, Samaneh Soltani
Publikováno v:
Mathematics Interdisciplinary Research, Vol 4, Iss 2, Pp 239-251 (2019)
The distinguishing number (index) D(G) (D'(G)) of a graph G is the least integer d such that G has an vertex labeling (edge labeling) with d labels that is preserved only by a trivial automorphism. In this paper we study the distinguishing number and
Externí odkaz:
https://doaj.org/article/66886be0fde64fad9c0d8f33486f5511
Autor:
Saeid Alikhani, Samaneh Soltani
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Vol 16, Iss 3, Pp 280-283 (2019)
The distinguishing number of a graph is the least integer such that has a vertex labeling with labels that is preserved only by a trivial automorphism. In this paper we characterize all trees with radius at most three and distinguishing number two. A
Externí odkaz:
https://doaj.org/article/fe8c5bba297045669507fbf9ab31b7d1