Zobrazeno 1 - 10
of 581
pro vyhledávání: '"disegni"'
Autor:
Disegni, Daniel
Let $\rho$ be a conjugate-symplectic, geometric representation of the Galois group of a CM field. Under the assumption that $\rho$ is automorphic, even-dimensional, and of minimal regular Hodge--Tate type, we construct an Euler system for $\rho$ in t
Externí odkaz:
http://arxiv.org/abs/2410.08419
Autor:
Disegni, Daniel, Zhang, Wei
We study the p-adic analogue of the arithmetic Gan-Gross-Prasad (GGP) conjectures for unitary groups. Let $\Pi$ be a hermitian cuspidal automorphic representation of GL_{n} x GL_{n+1} over a CM field, which is algebraic of minimal regular weight at i
Externí odkaz:
http://arxiv.org/abs/2410.08401
Autor:
Disegni, Daniel
We introduce `canonical' classes in the Selmer groups of certain Galois representations with a conjugate-symplectic symmetry. They are images of special cycles in unitary Shimura varieties, and defined uniquely up to a scalar. The construction is a s
Externí odkaz:
http://arxiv.org/abs/2303.17817
Publikováno v:
Arthroscopy Techniques, Vol 13, Iss 12, Pp 103145- (2024)
Rotator cuff injuries are common and can lead to pain and functional limitation of the shoulder, sometimes requiring surgical procedure. We describe a surgical approach combining the modified Mason-Allen and lasso-loop techniques for the repair of ro
Externí odkaz:
https://doaj.org/article/b0a7d5d5bb43481aaa92a356a6a8c480
Autor:
Disegni, Daniel, Liu, Yifeng
Fix a prime number $p$ and let $E/F$ be a CM extension of number fields in which $p$ splits relatively. Let $\pi$ be an automorphic representation of a quasi-split unitary group of even rank with respect to $E/F$ such that $\pi$ is ordinary above $p$
Externí odkaz:
http://arxiv.org/abs/2204.09239
Autor:
Disegni, Elio1,2 (AUTHOR) docteur.disegni@gmail.com, Pujol, Nicolas2 (AUTHOR), Letartre, Romain1 (AUTHOR)
Publikováno v:
Journal of Clinical Medicine. Oct2024, Vol. 13 Issue 20, p6067. 8p.
Publikováno v:
In Science of the Total Environment 20 October 2024 948
Autor:
Disegni, Daniel
Let $F$ be a totally real field and let $E/F$ be a CM quadratic extension. We construct a $p$-adic $L$-function attached to Hida families for the group ${\rm GL}_{2/F}\times {\rm Res}_{E/F}{\rm GL}_{1}$. It is characterised by an exact interpolation
Externí odkaz:
http://arxiv.org/abs/2102.02591