Zobrazeno 1 - 10
of 1 205
pro vyhledávání: '"dirichlet boundary conditions"'
Autor:
Maicon Sônego
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2024, Iss 30, Pp 1-14 (2024)
Consider a general reaction-diffusion problem, $u_t = \Delta u + f(x, u, u_x)$, on a revolution surface or in an $n$-dimensional ball with Dirichlet boundary conditions. In this work, we provide conditions related to the geometry of the domain and th
Externí odkaz:
https://doaj.org/article/9b44263365db4b668cb73b2a8bdc7e74
Autor:
Alnashri, Yahya, Alzubaidi, Hasan
Publikováno v:
Arab Journal of Mathematical Sciences, 2022, Vol. 30, Issue 1, pp. 67-80.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/AJMS-01-2022-0021
Autor:
Yahya Alnashri, Hasan Alzubaidi
Publikováno v:
Arab Journal of Mathematical Sciences, Vol 30, Iss 1, Pp 67-80 (2024)
Purpose – The main purpose of this paper is to introduce the gradient discretisation method (GDM) to a system of reaction diffusion equations subject to non-homogeneous Dirichlet boundary conditions. Then, the authors show that the GDM provides a c
Externí odkaz:
https://doaj.org/article/82bff89ecd6f489fb1c963fb02693bdf
Autor:
Hao Tian, Ali Basem, Hassan A. Kenjrawy, Ameer H. Al-Rubaye, Saad T.Y. Alfalahi, Hossein Azarinfar, Mohsen Khosravi, Xiuyun Xia
Publikováno v:
Heliyon, Vol 10, Iss 12, Pp e32650- (2024)
This paper presents an investigation into the stability and control aspects of delayed partial differential equation (PDE) systems utilizing the Lyapunov method. PDEs serve as powerful mathematical tools for modeling diverse and intricate systems suc
Externí odkaz:
https://doaj.org/article/5e0430a9612541ec989d7d5077f4d551
Publikováno v:
Advanced Nonlinear Studies, Vol 23, Iss 1, Pp 215-221 (2023)
By combining monotonicity theory related to the parametric version of the Browder-Minty theorem with fixed point arguments, hybrid existence results for a system of two operator equations are obtained. Applications are given to a system of boundary v
Externí odkaz:
https://doaj.org/article/9a3c30ad8e964f1fb27da6ed66246bf4
Autor:
Cemile Nur
Publikováno v:
Boundary Value Problems, Vol 2023, Iss 1, Pp 1-19 (2023)
Abstract We provide estimates for the eigenvalues of non-self-adjoint Sturm–Liouville operators with Dirichlet boundary conditions for a shift of the special potential 4 cos 2 x + 4 i V sin 2 x $4\cos ^{2}x+4iV\sin 2x$ that is a PT-symmetric optica
Externí odkaz:
https://doaj.org/article/5079a7f7d0e84cbe91e8de11ab197ca9
Publikováno v:
Mathematical Modelling and Analysis, Vol 29, Iss 2 (2024)
In this paper, our focus lies in addressing the Dirichlet problem associated with a specific class of critical anisotropic elliptic equations of Schrödinger-Kirchhoff type. These equations incorporate variable exponents and a real positive parameter
Externí odkaz:
https://doaj.org/article/2342b4d97cf44e43b17a6aec0853bb05
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2023, Iss 7, Pp 1-10 (2023)
We study positive solutions to the $p$–$q$ Laplacian two-point boundary value problem: \begin{align*} \begin{cases} -\mu[(u')^{p-1}]' - [(u')^{q-1}]' = \lambda u(1-u) \quad \text{on }(0,1) \\ u(0) = 0 = u(1) \end{cases} \end{align*} when $p = 4
Externí odkaz:
https://doaj.org/article/d29ed75c3669488da2cb6aa599c04121