Zobrazeno 1 - 10
of 115
pro vyhledávání: '"directional camera"'
Autor:
Ishihara, Yu a, ⁎, Takahashi, Masaki b
Publikováno v:
In Robotics and Autonomous Systems April 2022 150
Autor:
Sato, Tomokazu ⁎, Yokoya, Naokazu
Publikováno v:
In Journal of Visual Communication and Image Representation 2010 21(5):416-426
Publikováno v:
法政大学大学院紀要. 理工学・工学研究科編. 60:1-6
This paper describes the development of Robot Operating System (ROS) component for lane recognition and navigation of IGVC Auto - Nav Challenge. To achieve a robust and stable navigation, we propose new lane and obstacle recognition algorithm based o
Autor:
Wu, Chih-Jen a, 1, Tsai, Wen-Hsiang a, b, ⁎
Publikováno v:
In Robotics and Autonomous Systems 2009 57(5):546-555
Autor:
Jeng, Sheng-Wen a, ⁎, Tsai, Wen-Hsiang a, b, 1
Publikováno v:
In Image and Vision Computing 2008 26(5):690-701
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
法政大学大学院紀要. 理工学・工学研究科編. 56:1-8
Human color sense is different from camera captured color image due to the characteristic human visual sensation of optical illusion and color constancy. Regardless of optical illusion and color constancy, human car-driver can handle an automobile wi
Publikováno v:
法政大学大学院紀要. 理工学・工学研究科編 = 法政大学大学院紀要. 理工学・工学研究科編. 55:1-6
This paper describes a robust and stable lane detection algorithm for mobile robot under real world urban area environment. In order to achieve robust and stable lane detection, we propose a new eigenvector based clustering algorithm based on the omn
Publikováno v:
法政大学大学院紀要. 理工学・工学研究科編 = 法政大学大学院紀要. 理工学・工学研究科編. 55:1-6
This paper describes a new self-localization algorithm for IGVC Auto-Nav Challenge by using Omni-directional images without GPS information. In order to achieve an accurate self-localization of the mobile robot, a sequence of Omni-directional white l
Autor:
Naokazu Yokoya, Tomokazu Sato
Publikováno v:
Journal of Visual Communication and Image Representation. 21(5-6):416-426
In this article, we propose an efficient method for estimating a depth map from long-baseline image sequences captured by a calibrated moving multi-camera system. Our concept for estimating a depth map is very simple; we integrate the counting of the