Zobrazeno 1 - 10
of 248
pro vyhledávání: '"direct estimation"'
Publikováno v:
MethodsX, Vol 12, Iss , Pp 102528- (2024)
The development of data science has been needed in environmental fields such as marine, weather, and soil data. In general, the datasets are large in some cases, but they are often small because they contain observation data that the analyses themsel
Externí odkaz:
https://doaj.org/article/92236e4041d64ede9fb340c67a2c0a7a
Publikováno v:
Fire, Vol 6, Iss 10, p 379 (2023)
The surface fine dead fuel moisture content (FFMC) is an important factor in predicting forest fire risk and is influenced by various meteorological factors. Many prediction methods rely on temperature and humidity as factors, resulting in poor model
Externí odkaz:
https://doaj.org/article/389ab9bce082496d8b1d569fd11068dd
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Valeriia Sherina, Helene R. McMurray, Winslow Powers, Harmut Land, Tanzy M. T. Love, Matthew N. McCall
Publikováno v:
BMC Bioinformatics, Vol 21, Iss 1, Pp 1-15 (2020)
Abstract Background Quantitative real-time PCR (qPCR) is one of the most widely used methods to measure gene expression. An important aspect of qPCR data that has been largely ignored is the presence of non-detects: reactions failing to exceed the qu
Externí odkaz:
https://doaj.org/article/812c9b28a3c0467288cb8d83d52848d7
Autor:
Ramin Kawous, Maria E. T. C. van den Muijsenbergh, Diana Geraci, Kyra R. M. Hendriks, Livia E. Ortensi, Femke Hilverda, Alex Burdorf
Publikováno v:
BMC Public Health, Vol 20, Iss 1, Pp 1-6 (2020)
Abstract Background Owing to migration, female genital mutilation or cutting (FGM/C) has become a growing concern in host countries in which FGM/C is not familiar. There is a need for reliable estimates of FGM/C prevalence to inform medical and publi
Externí odkaz:
https://doaj.org/article/cb021003d65040818ea659747617c0a1
Publikováno v:
IEEE Access, Vol 7, Pp 124596-124605 (2019)
We present a new Adaptive Error Correction Net (AEC-Net) to formulate the estimation of Cobb anges from spinal X-rays as a high-precision regression task. Our AEC-Net introduces two novel innovations. (1) The AEC-Net contains two networks calculating
Externí odkaz:
https://doaj.org/article/4e34115269844e3eb1d0c6a57446ba5e
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Rotella, Jay J., Hines, James E.
Publikováno v:
Ecology, 2005 Apr 01. 86(4), 821-827.
Externí odkaz:
https://www.jstor.org/stable/3450836
Publikováno v:
The Annals of Statistics, 2001 Jun 01. 29(3), 595-623.
Externí odkaz:
https://www.jstor.org/stable/2673964
Publikováno v:
Statistics in Transition. New Series. 18(4):609-635
Externí odkaz:
https://www.ceeol.com/search/article-detail?id=665521