Zobrazeno 1 - 3
of 3
pro vyhledávání: '"dimension de Kodaira"'
Autor:
Gaël Cousin
Publikováno v:
Annales de l'Institut Fourier
Annales de l'Institut Fourier, 2014, 64 (2), pp.699-737. ⟨10.5802/aif.2863⟩
Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2014, 64 (2), pp.699-737. 〈10.5802/aif.2863〉
Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2014, 64 (2), pp.699-737. ⟨10.5802/aif.2863⟩
Annales de l'Institut Fourier, 2014, 64 (2), pp.699-737. ⟨10.5802/aif.2863⟩
Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2014, 64 (2), pp.699-737. 〈10.5802/aif.2863〉
Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2014, 64 (2), pp.699-737. ⟨10.5802/aif.2863⟩
One can easily give examples of rank 2 flat connections over $\mathbb{P}^2$ by rational pull-back of connections over $\mathbb{P}^1$. We give an example of a connection that can not occur in this way; this example is constructed from an algebraic sol
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dc8b309839e1225663965e1a19a8241e
https://hal.science/hal-00659358v3/document
https://hal.science/hal-00659358v3/document
Autor:
Rasdeaconu, Rares
In the first part of my thesis we provide infinitely many examples of pairs of diffeomorphic, non simply connected Kahler manifolds of complex dimension 3 with different Kodaira dimensions. Also, in any allowed Kodaira dimension we find infinitely m
Externí odkaz:
http://tel.archives-ouvertes.fr/tel-00273697
http://tel.archives-ouvertes.fr/docs/00/27/36/97/PDF/mythesis.pdf
http://tel.archives-ouvertes.fr/docs/00/27/36/97/PDF/mythesis.pdf
Autor:
Rasdeaconu, Rares
Publikováno v:
Mathematics [math]. State University of New York at Stony Brook, 2005. English
In the first part of my thesis we provide infinitely many examples of pairs of diffeomorphic, non simply connected Kahler manifolds of complex dimension 3 with different Kodaira dimensions. Also, in any allowed Kodaira dimension we find infinitely ma
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::076f961ec8680102e205879759ca7f34
https://theses.hal.science/tel-00273697
https://theses.hal.science/tel-00273697