Zobrazeno 1 - 10
of 34
pro vyhledávání: '"den WThF Frank Hollander"'
Publikováno v:
The Annals of Applied Probability, 27(4), 2130-2158. Institute of Mathematical Statistics
Annals of Applied Probability, 27(4), 2130-2158
Ann. Appl. Probab. 27, no. 4 (2017), 2130-2158
Annals of Applied Probability, 27(4), 2130-2158
Ann. Appl. Probab. 27, no. 4 (2017), 2130-2158
In this paper we study metastable behaviour at low temperature of Glauber spin-flip dynamics on random graphs. We fix a large number of vertices and randomly allocate edges according to the Configuration Model with a prescribed degree distribution. E
Autor:
R dos Santos, den WThF Frank Hollander
Publikováno v:
Annales de l'institut Henri Poincare (B): Probability and Statistics, 50(4), 1276-1300. Institute of Mathematical Statistics
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 50(4), 1276-1300
Ann. Inst. H. Poincaré Probab. Statist. 50, no. 4 (2014), 1276-1300
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 50(4), 1276-1300
Ann. Inst. H. Poincaré Probab. Statist. 50, no. 4 (2014), 1276-1300
We prove a strong law of large numbers for a one-dimensional random walk in a dynamic random environment given by a supercritical contact process in equilibrium. The proof uses a coupling argument based on the observation that the random walk eventua
Publikováno v:
Potential Analysis, 48(3), 375-403
van den Berg, M, Bolthausen, E & den Hollander, F 2018, ' Torsional Rigidity for Regions with a Brownian Boundary ', Potential Analysis, vol. 48, no. 3, pp. 375-403 . https://doi.org/10.1007/s11118-017-9640-z
Potential Analysis
van den Berg, M, Bolthausen, E & den Hollander, F 2018, ' Torsional Rigidity for Regions with a Brownian Boundary ', Potential Analysis, vol. 48, no. 3, pp. 375-403 . https://doi.org/10.1007/s11118-017-9640-z
Potential Analysis
Let $T^m$ be the $m$-dimensional unit torus, $m \in N$. The torsional rigidity of an open set $\Omega \subset T^m$ is the integral with respect to Lebesgue measure over all starting points $x \in \Omega$ of the expected lifetime in $\Omega$ of a Brow
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a2e6382cfc8f0c7632c039a75c86fe4d
https://hdl.handle.net/1887/58455
https://hdl.handle.net/1887/58455
Publikováno v:
Communications in Mathematical Physics, 285(3), 825-871. Springer
Communications in Mathematical Physics, 285(3), 825-871
Communications in Mathematical Physics
Communications in Mathematical Physics, 285(3), 825-871
Communications in Mathematical Physics
In this paper we study a two-dimensional directed self-avoiding walk model of a random copolymer in a random emulsion. The copolymer is a random concatenation of monomers of two types, $A$ and $B$, each occurring with density 1/2. The emulsion is a r
Publikováno v:
Nonlinear Analysis : Real World Applications, 7(1), 25-64. Elsevier
In this paper we study the following system of reaction-diffusion equations: ∂�/∂t =∆ � − V� + λδ0 ,� (0 ,x ) ≡ 0, ∂V/∂t = −�V, V (0 ,x ) ≡ 1. Here � (t, x )a ndV (t, x) are functions of time t ∈ (0, ∞ )a nd spacex
Publikováno v:
The Annals of Probability, 34(6), 2219-2287. Institute of Mathematical Statistics
Annals of Probability, 34(6), 2219-2287
Ann. Probab. 34, no. 6 (2006), 2219-2287
Annals of Probability, 34(6), 2219-2287
Ann. Probab. 34, no. 6 (2006), 2219-2287
In this paper, we study intermittency for the parabolic Anderson equation $\partial u/\partial t=\kappa\Delta u+\xi u$, where $u:\mathbb{Z}^d\times [0,\infty)\to\mathbb{R}$, $\kappa$ is the diffusion constant, $\Delta$ is the discrete Laplacian and $
Publikováno v:
Stochastic Processes and their Applications, 115(7), 1209-1232. Elsevier
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 115(7), 1209-1232
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 115(7), 1209-1232
In this paper we consider an arbitrary irreducible random walk on ℤd, d ≥ 1, with i.i.d. increments, together with an arbitrary i.i.d. random scenery. Walk and scenery are assumed to be independent. Random walk in random scenery (RWRS) is the ran
Publikováno v:
Probability Theory and Related Fields, 132(2), 163-202
Probability Theory and Related Fields
Probability Theory and Related Fields, 132(2), 163-202. Springer
Probability Theory and Related Fields
Probability Theory and Related Fields, 132(2), 163-202. Springer
In this paper we consider a standard Brownian motion in d, starting at 0 and observed until time t. The Brownian motion takes place in the presence of a Poisson random field of traps, whose centers have intensity t and whose shapes are drawn randomly
Publikováno v:
Annals of Mathematics, 159(2), 741-782
Annals of Mathematics, 159(2), 741-782. Princeton University Press
Annals of Mathematics, 159(2), 741-782. Princeton University Press
For a>0 , let W a 1 (t) and W a 2 (t) be the a -neighbourhoods of two independent standard Brownian motions in R d starting at 0 and observed until time t . We prove that, for d=3 and c>0 , lim t¿8 1 t (d-2)/d logP(|W a 1 (ct)nW a 2 (ct)|=t)=-I ¿ a
Autor:
den WThF Frank Hollander
Publikováno v:
Stochastic Processes and their Applications, 114(1), 1-26. Elsevier
This paper is a tutorial introduction to some of the mathematics behind metastable behavior of interacting particle systems. The main focus is on the formation of so-called critical droplets, in particular, on their geometry and the time of their app