Zobrazeno 1 - 10
of 26
pro vyhledávání: '"de Wolff, Babette"'
Autor:
Kepley, Shane, de Wolff, Babette A. J.
Pseudospectral approximation provides a means to approximate the dynamics of delay differential equations (DDE) by ordinary differential equations (ODE). This article develops a computer-aided algorithm to determine the distance between the unstable
Externí odkaz:
http://arxiv.org/abs/2405.07727
Coupled oscillators with time-delayed network interactions are critical to understand synchronization phenomena in many physical systems. Phase reductions to finite-dimensional phase oscillator networks allow for their explicit analysis. However, fir
Externí odkaz:
http://arxiv.org/abs/2404.11340
Autor:
de Wolff, Babette
Equivariant Pyragas control is a delayed feedback method that aims to stabilize spatio-temporal patterns in systems with symmetries. In this article, we apply equivariant Pyragas control to discrete waves, which are periodic solutions that have a fin
Externí odkaz:
http://arxiv.org/abs/2210.02211
Publikováno v:
Archive for Rational Mechanics and Analysis 246(1) (2022)
The complex Ginzburg--Landau equation serves as a paradigm of pattern formation and the existence and stability properties of Ginzburg--Landau $m$-armed spiral waves have been investigated extensively. However, many multi-armed spiral waves are unsta
Externí odkaz:
http://arxiv.org/abs/2203.01230
Autor:
de Wolff, Babette
A characteristic matrix function captures the spectral information of a bounded linear operator in a matrix-valued function. In this article, we consider a delay differential equation with one discrete time delay and assume this equation is equivaria
Externí odkaz:
http://arxiv.org/abs/2201.12190
Pseudospectral approximation reduces DDE (delay differential equations) to ODE (ordinary differential equations). Next one can use ODE tools to perform a numerical bifurcation analysis. By way of an example we show that this yields an efficient and r
Externí odkaz:
http://arxiv.org/abs/2006.13810
Autor:
Fiedler, Bernold, Nieto, Alejandro López, Rand, Richard H., Sah, Si Mohamed, Schneider, Isabelle, de Wolff, Babette
We explore stability and instability of rapidly oscillating solutions $x(t)$ for the hard spring delayed Duffing oscillator $$x''(t)+ ax(t)+bx(t-T)+x^3(t)=0.$$ Fix $T>0$. We target periodic solutions $x_n(t)$ of small minimal periods $p_n=2T/n$, for
Externí odkaz:
http://arxiv.org/abs/1906.06602
Autor:
Fiedler, Bernold, López Nieto, Alejandro, Rand, Richard H., Sah, Si Mohamed, Schneider, Isabelle, de Wolff, Babette
Publikováno v:
In Journal of Differential Equations 5 May 2020 268(10):5969-5995
Autor:
de Wolff, Babette A. J.1 (AUTHOR) b.wolff@vu.nl
Publikováno v:
Dynamical Systems: An International Journal. Mar2023, Vol. 38 Issue 1, p30-51. 22p.
Autor:
DE WOLFF, BABETTE A. J.
Publikováno v:
SIAM Journal on Mathematical Analysis; 2023, Vol. 55 Issue 6, p6707-6739, 33p