Zobrazeno 1 - 10
of 22
pro vyhledávání: '"de Moraes, Wagner Augusto Almeida"'
This paper explores the solvability and global hypoellipticity of Vekua-type differential operators on the n-dimensional torus, within the framework of Denjoy-Carleman ultradifferentiability. We provide the necessary and sufficient conditions for ach
Externí odkaz:
http://arxiv.org/abs/2406.13110
Publikováno v:
Indagationes Mathematicae, 2024
In this note, we investigate Vekua-type periodic operators of the form $Pu=Lu-Au-B\bar u$, where $L$ is a constant coefficient partial differential operator. We provide a complete characterization of the necessary and sufficient conditions for the so
Externí odkaz:
http://arxiv.org/abs/2311.10683
In this paper, we study the global properties of a class of evolution-like differential operator with a 0-order perturbation defined on the product of $r+1$ tori and $s$ spheres $\mathbb{T}^{r+1}\times(\mathbb{S}^{3})^s$, with $r$ and $s$ non-negativ
Externí odkaz:
http://arxiv.org/abs/2306.15583
Publikováno v:
In Indagationes Mathematicae May 2024 35(3):434-442
In this paper, we investigate the global properties of Fourier multipliers in the setting of nonharmonic analysis of boundary value problems. We give necessary and sufficient conditions for a Fourier multiplier to be globally hypoelliptic and also to
Externí odkaz:
http://arxiv.org/abs/2106.15600
We present sufficient conditions to have global hypoellipticity for a class of Vekua-type operators defined on a compact Lie group. When the group has the property that every non-trivial representation is not self-dual we show that these sufficient c
Externí odkaz:
http://arxiv.org/abs/2101.06316
In this paper, we present necessary and sufficient conditions to have global analytic hypoellipticity for a class of first-order operators defined on $\mathbb{T}^1 \times \mathbb{S}^3$. In the case of real-valued coefficients, we prove that an operat
Externí odkaz:
http://arxiv.org/abs/2001.09965
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Let $G_1$ and $G_2$ be compact Lie groups, $X_1 \in \mathfrak{g}_1$, $X_2 \in \mathfrak{g}_2$ and consider the operator \begin{equation*} L_{aq} = X_1 + a(x_1)X_2 + q(x_1,x_2), \end{equation*} where $a$ and $q$ are ultradifferentiable functions in th
Externí odkaz:
http://arxiv.org/abs/1911.02486
In this paper we characterize completely the global hypoellipticity and global solvability in the sense of Komatsu (of Roumieu and Beurling types) of constant-coefficients vector fields on compact Lie groups. We also analyze the influence of perturba
Externí odkaz:
http://arxiv.org/abs/1910.01922