Zobrazeno 1 - 10
of 36
pro vyhledávání: '"de Lira, Jorge H. S."'
Publikováno v:
J. London Math. Soc. 105 (2022), no.1, 308-342
Our work investigates varifolds $\Sigma \subset M$ in a Riemannian manifold, with arbitrary codimension and bounded mean curvature, contained in an open domain $\Omega$. Under mild assumptions on the curvatures of $M$ and on $\partial \Omega$, also a
Externí odkaz:
http://arxiv.org/abs/2004.08946
Autor:
de Lira, Jorge H. S., Cruz, Flávio F.
We prove the existence of classical solutions to the Dirichlet problem for a class of fully nonlinear elliptic equations of curvature type on Riemannian manifolds. We also derive new second derivative boundary estimates which allows us to extend some
Externí odkaz:
http://arxiv.org/abs/1204.5993
Autor:
de Lira, Jorge H. S., Soret, Marc
Given a hypersurface $M$ of null scalar curvature in the unit sphere $\mathbb{S}^n$, $n\ge 4$, such that its second fundamental form has rank greater than 2, we construct a singular scalar-flat hypersurface in $\Rr^{n+1}$ as a normal graph over a tru
Externí odkaz:
http://arxiv.org/abs/0812.2644
Autor:
Dajczer, Marcos, de Lira, Jorge H. S.
We prove the existence and uniqueness of graphs with prescribed mean curvature function in a large class of Riemannian manifolds which comprises spaces endowed with a conformal Killing vector field.
Externí odkaz:
http://arxiv.org/abs/0812.2642
Let $\psi$ be a given function defined on a Riemannian space. Under what conditions does there exist a compact starshaped hypersurface $M$ for which $\psi$, when evaluated on $M$, coincides with the $m-$th elementary symmetric function of principal c
Externí odkaz:
http://arxiv.org/abs/math/0702750
It is proved that the holomorphic quadratic differential associated to CMC surfaces in Riemannian products $\mathbb{S}^2\times\Rr$ and $\mathbb{H}^2\times \Rr$ discovered by U. Abresch and H. Rosenberg could be obtained as a linear combination of usu
Externí odkaz:
http://arxiv.org/abs/math/0511530
Publikováno v:
J. Inst. Math. Jussieu 5 (2006), no. 4, 527--562
It is still an open question whether a compact embedded hypersurface in the Euclidean space R^{n+1} with constant mean curvature and spherical boundary is necessarily a hyperplanar ball or a spherical cap, even in the simplest case of surfaces in R^3
Externí odkaz:
http://arxiv.org/abs/math/0311352
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
de Lira, Jorge H. S., Cruz, Flávio F.
Publikováno v:
Indiana University Mathematics Journal, 2013 Jan 01. 62(3), 815-854.
Externí odkaz:
https://www.jstor.org/stable/24904160
Autor:
de Lira, Jorge H. S., Roing, Fernanda
Publikováno v:
Annali di Matematica Pura ed Applicata; Apr2023, Vol. 202 Issue 2, p939-966, 28p