Zobrazeno 1 - 10
of 70
pro vyhledávání: '"de Freitas, Jessica K."'
Autor:
Thompson, Will E., Vidmar, David M., De Freitas, Jessica K., Pfeifer, John M., Fornwalt, Brandon K., Chen, Ruijun, Altay, Gabriel, Manghnani, Kabir, Nelsen, Andrew C., Morland, Kellie, Stumpe, Martin C., Miotto, Riccardo
Identifying disease phenotypes from electronic health records (EHRs) is critical for numerous secondary uses. Manually encoding physician knowledge into rules is particularly challenging for rare diseases due to inadequate EHR coding, necessitating r
Externí odkaz:
http://arxiv.org/abs/2312.06457
Autor:
Wanyan, Tingyi, Honarvar, Hossein, Jaladanki, Suraj K., Zang, Chengxi, Naik, Nidhi, Somani, Sulaiman, De Freitas, Jessica K., Paranjpe, Ishan, Vaid, Akhil, Miotto, Riccardo, Nadkarni, Girish N., Zitnik, Marinka, ArifulAzad, Wang, Fei, Ding, Ying, Glicksberg, Benjamin S.
Machine Learning (ML) models typically require large-scale, balanced training data to be robust, generalizable, and effective in the context of healthcare. This has been a major issue for developing ML models for the coronavirus-disease 2019 (COVID-1
Externí odkaz:
http://arxiv.org/abs/2101.04013
Autor:
De Freitas, Jessica K., Johnson, Kipp W., Golden, Eddye, Nadkarni, Girish N., Dudley, Joel T., Bottinger, Erwin P., Glicksberg, Benjamin S., Miotto, Riccardo
Publikováno v:
In Patterns 10 September 2021 2(9)
Autor:
Vaid, Akhil, Jaladanki, Suraj K, Xu, Jie, Teng, Shelly, Kumar, Arvind, Lee, Samuel, Somani, Sulaiman, Paranjpe, Ishan, De Freitas, Jessica K, Wanyan, Tingyi, Johnson, Kipp W, Bicak, Mesude, Klang, Eyal, Kwon, Young Joon, Costa, Anthony, Zhao, Shan, Miotto, Riccardo, Charney, Alexander W, Böttinger, Erwin, Fayad, Zahi A, Nadkarni, Girish N, Wang, Fei, Glicksberg, Benjamin S
Publikováno v:
JMIR Medical Informatics, Vol 9, Iss 1, p e24207 (2021)
BackgroundMachine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability. Ob
Externí odkaz:
https://doaj.org/article/11f1e0ca04304420af2f5d46261fc8ee
Autor:
Vaid, Akhil, Somani, Sulaiman, Russak, Adam J, De Freitas, Jessica K, Chaudhry, Fayzan F, Paranjpe, Ishan, Johnson, Kipp W, Lee, Samuel J, Miotto, Riccardo, Richter, Felix, Zhao, Shan, Beckmann, Noam D, Naik, Nidhi, Kia, Arash, Timsina, Prem, Lala, Anuradha, Paranjpe, Manish, Golden, Eddye, Danieletto, Matteo, Singh, Manbir, Meyer, Dara, O'Reilly, Paul F, Huckins, Laura, Kovatch, Patricia, Finkelstein, Joseph, Freeman, Robert M., Argulian, Edgar, Kasarskis, Andrew, Percha, Bethany, Aberg, Judith A, Bagiella, Emilia, Horowitz, Carol R, Murphy, Barbara, Nestler, Eric J, Schadt, Eric E, Cho, Judy H, Cordon-Cardo, Carlos, Fuster, Valentin, Charney, Dennis S, Reich, David L, Bottinger, Erwin P, Levin, Matthew A, Narula, Jagat, Fayad, Zahi A, Just, Allan C, Charney, Alexander W, Nadkarni, Girish N, Glicksberg, Benjamin S
Publikováno v:
Journal of Medical Internet Research, Vol 22, Iss 11, p e24018 (2020)
BackgroundCOVID-19 has infected millions of people worldwide and is responsible for several hundred thousand fatalities. The COVID-19 pandemic has necessitated thoughtful resource allocation and early identification of high-risk patients. However, ef
Externí odkaz:
https://doaj.org/article/d26bd88c400844cfbae830c0f468bbfa
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Sigel, Keith Magnus, Swartz, Talia H., Golden, Eddye, Paranjpe, Ishan, Somani, Sulaiman, Richter, Felix, De Freitas, Jessica K., Miotto, Riccardo, Zhao, Shan, Polak, Paz, Mutetwa, Tinaye, Factor, Stephanie, Mehandru, Saurabh, Mullen, Michael, Cossarini, Francesca, Böttinger, Erwin (Prof. Dr.), Fayad, Zahi, Merad, Miriam, Gnjatic, Sacha, Aberg, Judith, Charney, Alexander, Nadkarni, Girish, Glicksberg, Benjamin S.
Background: There are limited data regarding the clinical impact of coronavirus disease 2019 (COVID-19) on people living with human immunodeficiency virus (PLWH). In this study, we compared outcomes for PLWH with COVID-19 to a matched comparison grou
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______266::cb58ba706273cb29abc5b43304be0eeb
https://publishup.uni-potsdam.de/frontdoor/index/index/docId/59145
https://publishup.uni-potsdam.de/frontdoor/index/index/docId/59145
Autor:
Sigel, Keith, Swartz, Talia, Golden, Eddye, Paranjpe, Ishan, Somani, Sulaiman, Richter, Felix, De Freitas, Jessica K, Miotto, Riccardo, Zhao, Shan, Polak, Paz, Mutetwa, Tinaye, Factor, Stephanie, Mehandru, Saurabh, Mullen, Michael, Cossarini, Francesca, Bottinger, Erwin, Fayad, Zahi, Merad, Miriam, Gnjatic, Sacha, Aberg, Judith, Charney, Alexander, Nadkarni, Girish, Glicksberg, Benjamin S
Publikováno v:
Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America
Background There have been limited data regarding the clinical impact of COVID-19 disease on people with HIV (PWH). In this study we compared outcomes for PWH with COVID-19 disease to a matched comparison group. Design We identified 88 PWH hospitaliz
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.