Zobrazeno 1 - 10
of 23
pro vyhledávání: '"de Cristoforis, M. Lanza"'
Autor:
de Cristoforis, M. Lanza
The aim of this paper is to prove continuity results for the volume potential corresponding to the fundamental solution of a second order differential operator with constant coefficients in Schauder spaces of negative exponent and to generalize some
Externí odkaz:
http://arxiv.org/abs/2408.17192
Autor:
de Cristoforis, M. Lanza
We present a nonvariational setting for the Neumann problem for the Poisson equation for solutions that are H\"{o}lder continuous and that may have infinite Dirichlet integral. We introduce a distributional normal derivative on the boundary for the s
Externí odkaz:
http://arxiv.org/abs/2405.01818
Autor:
de Cristoforis, M. Lanza
We present a nonvariational setting for the Neumann problem for harmonic functions that are H\"{o}lder continuous and that may have infinite Dirichlet integral. Then we introduce a space of distributions on the boundary (a space of first order traces
Externí odkaz:
http://arxiv.org/abs/2403.15057
Autor:
de Cristoforis, M. Lanza
We provide a summary of the continuity properties of the boundary integral operator corresponding to the double layer potential associated to the fundamental solution of a {\em nonhomogeneous} second order elliptic differential operator with constant
Externí odkaz:
http://arxiv.org/abs/2309.00393
Autor:
de Cristoforis, M. Lanza
In this paper we consider an elliptic operator with constant coefficients and we estimate the maximal function of the tangential gradient of the kernel of the double layer potential with respect to its first variable. As a consequence, we deduce the
Externí odkaz:
http://arxiv.org/abs/2307.04153
Autor:
de Cristoforis, M. Lanza
We prove the validity of regularizing properties of the boundary integral operator corresponding to the double layer potential associated to the fundamental solution of a {\em nonhomogeneous} second order elliptic differential operator with constant
Externí odkaz:
http://arxiv.org/abs/2307.04775
Autor:
de Cristoforis, M. Lanza
A necessary and sufficient compactness criterion in Schauder Spaces is proved.
Comment: The present note had been pre-printed in 1991
Comment: The present note had been pre-printed in 1991
Externí odkaz:
http://arxiv.org/abs/2306.14304
Publikováno v:
Z. Angew. Math. Phys., (2016), 67:116, 30 p
The purpose of this paper is to obtain existence and uniqueness results in weighted Sobolev spaces for transmission problems for the non-linear Darcy-Forchheimer-Brinkman system and the linear Stokes system in two complementary Lipschitz domains in $
Externí odkaz:
http://arxiv.org/abs/1510.04981
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.