Zobrazeno 1 - 10
of 534
pro vyhledávání: '"de Carvalho, Marcelo"'
Publikováno v:
Connect to a 24 p. preview or request complete full text in PDF format.
Thesis (M.A.)--University of California, San Diego, 2010.
Title from first page of PDF file (viewed July 13, 2010). Available via ProQuest Digital Dissertations. Includes bibliographical references (leaves 211-219).
Title from first page of PDF file (viewed July 13, 2010). Available via ProQuest Digital Dissertations. Includes bibliographical references (leaves 211-219).
Externí odkaz:
http://wwwlib.umi.com/cr/fullcit?p1477954
Autor:
e Silva, Yasmin C., Rezende, Pedro A., Lopes, Carlos E.B., Lopes, Marcelo C., Oliveira, Eric S., de Carvalho, Marcelo P.N., Costa, Erica A., Ecco, Roselene
Publikováno v:
In Journal of Comparative Pathology July 2024 212:27-31
Autor:
de Moura Pedro, Rodolpho Augusto, Besen, Bruno Adler Maccagnan Pinheiro, Mendes, Pedro Vitale, Gomes, Augusto Cezar Marins, de Carvalho, Marcelo Ticianelli, Malbouisson, Luiz Marcelo Sá, Park, Marcelo, Taniguchi, Leandro Utino
Publikováno v:
In Journal of Critical Care April 2024 80
Autor:
Zwarg, Ticiana, Raso, Tânia Freitas, de Carvalho, Marcelo Pires Nogueira, Santos, Renato Lima, dos Santos, Daniel Oliveira, Llano, Horwald A.B., Soares, Rodrigo Martins
Publikováno v:
In Veterinary Parasitology: Regional Studies and Reports November 2023 46
McCuaig (2001, Brace Generation, J. Graph Theory 38: 124-169) proved a generation theorem for braces, and used it as the principal induction tool to obtain a structural characterization of Pfaffian braces (2004, P{\'o}lya's Permanent Problem, Electro
Externí odkaz:
http://arxiv.org/abs/1903.11170
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
A well-studied geometric object in combinatorial optimization is the perfect matching polytope of a graph $G$. In any investigation concerning the perfect matching polytope, one may assume that $G$ is matching covered --- that is, it is a connected g
Externí odkaz:
http://arxiv.org/abs/1807.07339
Lov\'asz (1987) proved that every matching covered graph $G$ may be uniquely decomposed into a list of bricks (nonbipartite) and braces (bipartite); we let $b(G)$ denote the number of bricks. An edge $e$ is removable if $G-e$ is also matching covered
Externí odkaz:
http://arxiv.org/abs/1803.08713
A cut $C:=\partial(X)$ of a matching covered graph $G$ is a separating cut if both its $C$-contractions $G/X$ and $G/\overline{X}$ are also matching covered. A brick is solid if it is free of nontrivial separating cuts. In 2004, we (Carvalho, Lucches
Externí odkaz:
http://arxiv.org/abs/1705.09428