Zobrazeno 1 - 10
of 18
pro vyhledávání: '"de Almagro, Rodrigo T. Sato Martín"'
Autor:
Celledoni, Elena, Çokaj, Ergys, Leone, Andrea, Leyendecker, Sigrid, Murari, Davide, Owren, Brynjulf, de Almagro, Rodrigo T. Sato Martín, Stavole, Martina
Euler's elastica is a classical model of flexible slender structures, relevant in many industrial applications. Static equilibrium equations can be derived via a variational principle. The accurate approximation of solutions of this problem can be ch
Externí odkaz:
http://arxiv.org/abs/2312.00644
Autor:
Leyendecker, Sigrid, Maslovskaya, Sofya, Ober-Blobaum, Sina, de Almagro, Rodrigo T. Sato Martin, Szemenyei, Flora Orsolya
In this work, we consider optimal control problems for mechanical systems on vector spaces with fixed initial and free final state and a quadratic Lagrange term. Specifically, the dynamics is described by a second order ODE containing an affine contr
Externí odkaz:
http://arxiv.org/abs/2307.13402
A new procedure to construct symplectic methods for constrained mechanical systems is developed in this paper. The definition of a map coming from the notion of retraction maps allows to adapt the continuous problem to the discretization rule rather
Externí odkaz:
http://arxiv.org/abs/2306.06786
In this paper, high-order numerical integrators on homogeneous spaces will be presented as an application of nonholonomic partitioned Runge-Kutta Munthe-Kaas (RKMK) methods on Lie groups. A homogeneous space $M$ is a manifold where a group $G$ acts t
Externí odkaz:
http://arxiv.org/abs/2201.12022
Discrete variational methods have shown an excellent performance in numerical simulations of different mechanical systems. In this paper, we introduce an iterative method for discrete variational methods appropriate for boundary value problems. More
Externí odkaz:
http://arxiv.org/abs/2109.05559
Autor:
Colombo, Leonardo J., de Diego, David Martín, Nayak, Aradhana, de Almagro, Rodrigo T. Sato Martín
We study the tracking of a trajectory for a nonholonomic system by recasting the problem as a constrained optimal control problem. The cost function is chosen to minimize the error in positions and velocities between the trajectory of a nonholonomic
Externí odkaz:
http://arxiv.org/abs/2001.10346
In this paper we provide a variational derivation of the Euler-Poincar\'e equations for systems subjected to external forces using an adaptation of the techniques introduced by Galley and others. Moreover, we study in detail the underlying geometry w
Externí odkaz:
http://arxiv.org/abs/1906.09819
In the last two decades, significant effort has been put in understanding and designing so-called structure-preserving numerical methods for the simulation of mechanical systems. Geometric integrators attempt to preserve the geometry associated to th
Externí odkaz:
http://arxiv.org/abs/1810.10926
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.