Zobrazeno 1 - 10
of 102
pro vyhledávání: '"da Silva, Paulo Ricardo"'
The main goal of this paper is to study compactifications of polynomial slow-fast systems. More precisely, the aim is to give conditions in order to guarantee normal hyperbolicity at infinity of the Poincar\'e-Lyapunov sphere for slow-fast systems de
Externí odkaz:
http://arxiv.org/abs/2401.06239
We studied piecewise smooth differential systems of the form $$\dot{z} = Z(z) = \dfrac{1 + \operatorname{sgn}(F)}{2}X(z) + \dfrac{1 - \operatorname{sgn}(F)}{2}Y(z),$$ where $F: \mathbb{R}^{n}\rightarrow \mathbb{R}$ is a smooth map having 0 as a regul
Externí odkaz:
http://arxiv.org/abs/2205.02263
This paper concerns the local study of analytic constrained differential systems (or impasse systems) of the form $A(x)\dot{x} = F(x)$, $x\in\mathbb{R}^{2}$, where $F$ is a vector field and $A$ is a matrix valued function. Using techniques of resolut
Externí odkaz:
http://arxiv.org/abs/2105.04748
We present a theorem of resolution of singularities for real analytic constrained differential systems $A(x)\dot{x} = F(x)$ defined on a 2-manifold with corners having impasse set $\{x; \det A(x) = 0\}$. This result can be seen as a generalization of
Externí odkaz:
http://arxiv.org/abs/2012.00085
In this paper we characterize the phase portrait of the Riccati quadratic polynomial differential systems $$\dot{x}= \alpha_2(x),\quad\dot{y} = ky^2+\beta_1(x) y + \gamma_2(x), $$ with $(x,y)\in\mathbb{R}^2$, $\gamma_2(x)$ non-zero (otherwise the sys
Externí odkaz:
http://arxiv.org/abs/2008.07597
We study flows of smooth vector fields $X$ over invariant surfaces $M$ which are levels of rational first integrals. It leads us to study constrained systems, that is, systems with impasses. We identify a subset $\mathcal{I} \subset M$ which we call
Externí odkaz:
http://arxiv.org/abs/2001.01741
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We deal with non-smooth differential systems $\dot{z}=X(z), z\in R^{n},$ with discontinuity occurring in a codimension one smooth surface $\Sigma$. A regularization of $X$ is a 1-parameter family of smooth vector fields $X^{\delta},\delta>0$, satisfy
Externí odkaz:
http://arxiv.org/abs/1809.07612
In this work we consider piecewise smooth vector fields $X$ defined in $\R^n\setminus \Sigma$, where $\Sigma$ is a self-intersecting switching manifold. A double regularization of $X$ is a 2-parameter family of smooth vector fields $X_{\e.\eta}$, $\e
Externí odkaz:
http://arxiv.org/abs/1808.07968
Publikováno v:
IEEE Transactions on Information Theory, vol. 65, no. 5, pp. 3246-3260, May 2019
Lattice codes are elegant and powerful structures that not only can achieve the capacity of the AWGN channel but are also a key ingredient to many multiterminal schemes that exploit linearity properties. However, constructing lattice codes that can r
Externí odkaz:
http://arxiv.org/abs/1712.08201