Zobrazeno 1 - 10
of 42
pro vyhledávání: '"da Silva, Joao Lita"'
Autor:
da Silva, João Lita
For a sequence $\{X_{n}, \, n \geqslant 1 \}$ of random variables satisfying $\mathbb{E} \lvert X_{n} \rvert < \infty$ for all $n \geqslant 1$, a maximal inequality is established, and used to obtain strong law of large numbers for dependent random v
Externí odkaz:
http://arxiv.org/abs/2212.12241
Autor:
da Silva, João Lita, Lourenço, Vanda
For an array $\left\{X_{n,j}, \, 1 \leqslant j \leqslant k_{n}, n \geqslant 1 \right\}$ of random variables and a sequence $\{c_{n} \}$ of positive numbers, sufficient conditions are given under which, for all $\varepsilon > 0$, $\sum_{n=1}^{\infty}
Externí odkaz:
http://arxiv.org/abs/2103.01996
Autor:
da Silva, João Lita
For a sequence $\{X_{n}, \, n \geqslant 1 \}$ of nonnegative random variables where $\max[\min(X_{n} - s,t),0]$, $t > s \geqslant 0$, satisfy a moment inequality, sufficient conditions are given under which $\sum_{k=1}^n (X_k - \mathbb{E} \, X_k)/b_n
Externí odkaz:
http://arxiv.org/abs/2011.10262
Autor:
da Silva, João Lita
A necessary condition is given for a sequence of identically distributed and pairwise positively quadrant dependent random variables obeying the strong laws of large numbers with respect to the normalising constants $n^{1/p}$ $(1 \leqslant p < 2)$.
Externí odkaz:
http://arxiv.org/abs/2004.02949
Autor:
da Silva, João Lita
In this paper we express the eigenvalues of a sort of real heptadiagonal symmetric matrices as the zeros of explicit rational functions establishing upper and lower bounds for each of them. From these prescribed eigenvalues we compute also eigenvecto
Externí odkaz:
http://arxiv.org/abs/1907.06942
Autor:
da Silva, João Lita
In this paper we express the eigenvalues of anti-heptadiagonal persymmetric Hankel matrices as the zeros of explicit polynomials giving also a representation of its eigenvectors. We present also an expression depending on localizable parameters to co
Externí odkaz:
http://arxiv.org/abs/1907.00260
Autor:
da Silva, João Lita
The main purpose of this paper is to obtain strong laws of large numbers for arrays or weighted sums of random variables under a scenario of dependence. Namely, for triangular arrays $\{X_{n,k}, \, 1 \leqslant k \leqslant n, \, n \geqslant 1 \}$ of r
Externí odkaz:
http://arxiv.org/abs/1904.01327
Autor:
da Silva, João Lita
In this paper we express the eigenvalues of real anti-tridiagonal Hankel matrices as the zeros of given rational functions. We still derive eigenvectors for these structured matrices at the expense of prescribed eigenvalues.
Externí odkaz:
http://arxiv.org/abs/1902.06998
Autor:
da Silva, João Lita
Given a triangular array $\left\{X_{n,k}, \, 1 \leqslant k \leqslant n, n \geqslant 1 \right\}$ of random variables satisfying $\mathbb{E} \lvert X_{n,k} \rvert^{p} < \infty$ for some $p \geqslant 1$ and sequences $\{b_{n} \}$, $\{c_{n} \}$ of positi
Externí odkaz:
http://arxiv.org/abs/1901.06147
Autor:
da Silva, João Lita
We obtain Marcinkiewicz-Zygmund strong laws of large numbers for weighted sums of pairwise positively quadrant dependent random variables stochastically dominated by a random variable $X \in \mathscr{L}_{p}$, $1 \leqslant p < 2$. We use our results t
Externí odkaz:
http://arxiv.org/abs/1812.09947