Zobrazeno 1 - 8
of 8
pro vyhledávání: '"da Silva, Eurípedes Carvalho"'
For a foliation by CMC hypersurfaces on a complete Riemannian manifold $M^{n+1}$ with sectional curvature bounded from below by $-nK_0\leq 0$ and such that the mean curvature $H$ of the leaves of the foliation satisfies $|H|\geq \sqrt{K_0}$, under ce
Externí odkaz:
http://arxiv.org/abs/2404.13772
In this paper, we prove the following version of the famous Bernstein's theorem: Let $X\subset \mathbb R^{n+k}$ be a closed and connected set with Hausdorff dimension $n$. Assume that $X$ satisfies the monotonicity formula at $p\in X$. Then, the foll
Externí odkaz:
http://arxiv.org/abs/2312.01141
In this article, we present a complete classification, with normal forms, of the real algebraic curves under blow-spherical homeomorphisms at infinity.
Comment: 15 pages and 3 figures. arXiv admin note: text overlap with arXiv:2302.02026
Comment: 15 pages and 3 figures. arXiv admin note: text overlap with arXiv:2302.02026
Externí odkaz:
http://arxiv.org/abs/2304.13891
This article is devoted to studying complex algebraic sets under (global) blow-spherical equivalence. The main results of this article are complete classifications of complex algebraic curves. Firstly, we present a complete classification of complex
Externí odkaz:
http://arxiv.org/abs/2302.02026
In this work, we study the geometric properties of spacelike foliations by hypersurfaces on a Lorentz manifold. We investigate conditions for the leaves being stable, totally geodesic or totally umbilical. We consider that $\overline{M}^{n+1}$ is equ
Externí odkaz:
http://arxiv.org/abs/2203.09605
Publikováno v:
Results Math 75, 36 (2020)
In this work we study the geometric properties of spacelike foliations by hypersurfaces on a Lorentz manifold. We find an equation that relates the foliation with the ambient manifold and apply it to investigate conditions for the leaves being totall
Externí odkaz:
http://arxiv.org/abs/1907.10705
In this work, we find an equation that relates the Ricci curvature of a riemannian manifold $M$ and the second fundamental forms of two orthogonal foliations of complementary dimensions, $\mathcal{F}$ and $\mathcal{F}^{\bot}$, defined on $M$. Using t
Externí odkaz:
http://arxiv.org/abs/1711.05690
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.