Zobrazeno 1 - 10
of 21
pro vyhledávání: '"crosshole ground-penetrating radar (GPR)"'
Publikováno v:
Applied Sciences, Vol 14, Iss 2, p 618 (2024)
Monte Carlo-based sampling methods (MCMC) can be used to solve inverse problems affecting ground penetrating radar (GPR) data. However, due to their high computational complexity, they have not been widely used in practical applications. This article
Externí odkaz:
https://doaj.org/article/e4d41e0ef2da4b9eac032861b1a0b991
Publikováno v:
Remote Sensing, Vol 15, Iss 14, p 3650 (2023)
The crosshole ground-penetrating radar (GPR) technique is widely used to characterize subsurface structures, yet the interpretation of crosshole GPR data involves solving non-linear and ill-posed inverse problems. In this work, we developed a generat
Externí odkaz:
https://doaj.org/article/81e7bd2c1752413798352fcdd7374a27
Publikováno v:
Remote Sensing, Vol 13, Iss 22, p 4530 (2021)
Crosshole ground-penetrating radar (GPR) is an important tool for a wide range of geoscientific and engineering investigations, and the Markov chain Monte Carlo (MCMC) method is a heuristic global optimization method that can be used to solve the inv
Externí odkaz:
https://doaj.org/article/c2b928f12e8b46ae85658562f8efaaf9
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Remote Sensing, Vol 13, Iss 2, p 215 (2021)
The crosshole ground penetrating radar (GPR) is a widely used tool to map subsurface properties, and inversion methods are used to derive electrical parameters from crosshole GPR data. In this paper, a probabilistic inversion algorithm that uses Mark
Externí odkaz:
https://doaj.org/article/da36a667338749f99dbd3de73397fd3c
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Remote Sensing, Vol 13, Iss 4530, p 4530 (2021)
Crosshole ground-penetrating radar (GPR) is an important tool for a wide range of geoscientific and engineering investigations, and the Markov chain Monte Carlo (MCMC) method is a heuristic global optimization method that can be used to solve the inv
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Electronics, Vol 8, Iss 6, p 630 (2019)
Electronics
Volume 8
Issue 6
Electronics
Volume 8
Issue 6
Bayesian inversion of crosshole ground penetrating radar (GPR) data is capable of characterizing the subsurface dielectric properties and qualifying the associated uncertainties. Markov chain Monte Carlo (MCMC) simulations within the Bayesian inversi
Publikováno v:
AUTOMATION IN CONSTRUCTION, vol 68
Qin, H; Xie, X; Vrugt, JA; Zeng, K; & Hong, G. (2016). Underground structure defect detection and reconstruction using crosshole GPR and Bayesian waveform inversion. AUTOMATION IN CONSTRUCTION, 68, 156-169. doi: 10.1016/j.autcon.2016.03.011. UC Irvine: Retrieved from: http://www.escholarship.org/uc/item/6vr0k6sp
Qin, H; Xie, X; Vrugt, JA; Zeng, K; & Hong, G. (2016). Underground structure defect detection and reconstruction using crosshole GPR and Bayesian waveform inversion. AUTOMATION IN CONSTRUCTION, 68, 156-169. doi: 10.1016/j.autcon.2016.03.011. UC Irvine: Retrieved from: http://www.escholarship.org/uc/item/6vr0k6sp
Crosshole ground-penetrating radar (GPR) is a widely used measurement technique to help inspect the structural integrity of man-made underground structures, yet the resulting waveform and travel-time data can be difficult, complex and challenging to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::15f56b2ea526e08d4d47044398131f30
https://escholarship.org/uc/item/6vr0k6sp
https://escholarship.org/uc/item/6vr0k6sp