Zobrazeno 1 - 10
of 23 689
pro vyhledávání: '"convex function"'
Publikováno v:
Open Mathematics, Vol 22, Iss 1, Pp 303-311 (2024)
In this article, we study some Hermite-Hadamard-type inequalities for strongly hh-convex functions on co-ordinates in Rn{{\mathbb{R}}}^{n}, which extend some known results. Some mappings connected with these inequalities and related applications are
Externí odkaz:
https://doaj.org/article/da6d7b05d4514e5ba59aae787277ce3d
Autor:
Bombardelli Mea, Varošanec Sanja
Publikováno v:
Annales Mathematicae Silesianae, Vol 38, Iss 2, Pp 195-213 (2024)
We present Hermite–Hadamard–Fejér type inequalities for strongly MφMψ -convex functions. Some refinements of them and bounds for the integral mean of the product of two functions are also obtained.
Externí odkaz:
https://doaj.org/article/777192363ebf40e0a431b5a25c8d4e1e
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-9 (2024)
Abstract This study establishes Newton-type inequalities for third differentiable and s-convex functions that use the Riemann integral. New Newton-type inequalities are also introduced using a summation parameter p ≥ 1 $p\geq 1$ for various convexi
Externí odkaz:
https://doaj.org/article/304c8254c3e7452aaf39cdd284cdb362
Autor:
Jleli Mohamed
Publikováno v:
Open Mathematics, Vol 22, Iss 1, Pp 369-390 (2024)
Fejér’s integral inequality is a weighted version of the Hermite-Hadamard inequality that holds for the class of convex functions. To derive his inequality, Fejér [Über die Fourierreihen, II, Math. Naturwiss, Anz. Ungar. Akad. Wiss. 24 (1906), 3
Externí odkaz:
https://doaj.org/article/64d4a4906e044ed997d755a2b099791b
Autor:
Attazar Bakht, Matloob Anwar
Publikováno v:
AIMS Mathematics, Vol 9, Iss 10, Pp 28130-28149 (2024)
Integral inequalities involving exponential convexity are significant in both theoretical and applied mathematics. In this paper, we establish a new Hermite-Hadamard type inequality for the class of exponentially convex functions by using the concept
Externí odkaz:
https://doaj.org/article/e3438cda9bca41c7a2862b8a4d4e3bbb