Zobrazeno 1 - 10
of 352
pro vyhledávání: '"content-adaptive"'
Autor:
Sio-Kei Im, Ka-Hou Chan
Publikováno v:
Mathematics, Vol 12, Iss 7, p 997 (2024)
The attention mechanism performs well for the Neural Machine Translation (NMT) task, but heavily depends on the context vectors generated by the attention network to predict target words. This reliance raises the issue of long-term dependencies. Inde
Externí odkaz:
https://doaj.org/article/b301578b177f45e0a8c6f5e2b754e767
Autor:
Saurabh Agarwal, Ki-Hyun Jung
Publikováno v:
Applied Sciences, Vol 12, Iss 22, p 11869 (2022)
Digital images are very popular and commonly used for hiding crucial data. In a few instances, image steganography is misused for communicating with improper data. In this paper, a robust deep neural network is proposed for the identification of cont
Externí odkaz:
https://doaj.org/article/4ae4d9cc592d45149d487cb7d845af0f
Autor:
Ayesha Saeed, Fawad, Muhammad Jamil Khan, Humayun Shahid, Syeda Iffat Naqvi, Muhammad Ali Riaz, Mansoor Shaukat Khan, Yasar Amin
Publikováno v:
IEEE Access, Vol 8, Pp 21613-21630 (2020)
Content-adaptive steganography intends to hide data in the complex texture content of the image. Recently, some secure steganography methods have been proposed to identify the textural complexity of an image. However, most of the techniques do not ta
Externí odkaz:
https://doaj.org/article/c026510506c44337812771d14164af1b
Publikováno v:
IEEE Access, Vol 8, Pp 47013-47020 (2020)
Convolutional neural network-based methods are attracting increasing attention in steganalysis. However, steganalysis for content-adaptive image steganography in the spatial domain is still a difficult problem. In this paper, a new convolutional neur
Externí odkaz:
https://doaj.org/article/c4efd17e6d204c46a787da34b5e25fa9
Publikováno v:
Sensors, Vol 22, Iss 17, p 6660 (2022)
Infrared (IR) band sensors can capture digital images under challenging conditions, such as haze, smoke, and fog, while visible (VIS) band sensors seize abundant texture information. It is desired to fuse IR and VIS images to generate a more informat
Externí odkaz:
https://doaj.org/article/cca11a8f8f5c44b8bddc631d47c9ca14
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
IEEE Access, Vol 7, Pp 183222-183235 (2019)
In this paper, we firstly analyze the statistical distribution of simultaneous sparse coding errors (SSCE), which reflects the local correlation and non-local correlation characteristics of natural images. Based on the observation, we establish the o
Externí odkaz:
https://doaj.org/article/8f55541e4fb74c81b7d8d7354f40cca2
Publikováno v:
Applied Sciences, Vol 12, Iss 4, p 2041 (2022)
For hand gesture recognition, recurrent neural networks and 3D convolutional neural networks are the most commonly used methods for learning the spatial–temporal features of gestures. The calculation of the hidden state of the recurrent neural netw
Externí odkaz:
https://doaj.org/article/8ab3d6b3cd1c44609a092773864f4354
Publikováno v:
Applied Sciences, Vol 12, Iss 2, p 602 (2022)
Superpixel segmentation has become a crucial pre-processing tool to reduce computation in many computer vision applications. In this paper, a superpixel extraction algorithm based on a seed strategy of contour encoding (SSCE) for infrared images is p
Externí odkaz:
https://doaj.org/article/f8371859494940729c6632cab70b0aec
Publikováno v:
Symmetry, Vol 13, Iss 12, p 2338 (2021)
Nowadays, it remains a major challenge to efficiently compress encrypted images. In this paper, we propose a novel encryption-then-compression (ETC) scheme to enhance the performance of lossy compression on encrypted gray images through heuristic opt
Externí odkaz:
https://doaj.org/article/ec33fd692cfe42ffa4e66a2cc2aad0d1