Zobrazeno 1 - 10
of 14
pro vyhledávání: '"conor parks"'
Autor:
Jonathan Cairns, Emilyanne Leonard, Kainat Khan, Conor Parks, Gareth Maglennon, Bairu Zhang, Stanley E. Lazic, Lorna Ewart, Rhiannon David
Publikováno v:
Frontiers in Pharmacology, Vol 14 (2023)
Introduction: Microphysiological systems (MPS; organ-on-a-chip) aim to recapitulate the 3D organ microenvironment and improve clinical predictivity relative to previous approaches. Though MPS studies provide great promise to explore treatment options
Externí odkaz:
https://doaj.org/article/1257d15b6da04bb7825cb361187ba6d5
Publikováno v:
Frontiers in Molecular Biosciences, Vol 7 (2020)
Protein-ligand binding affinity is a key pharmacodynamic endpoint in drug discovery. Sole reliance on experimental design, make, and test cycles is costly and time consuming, providing an opportunity for computational methods to assist. Herein, we pr
Externí odkaz:
https://doaj.org/article/3a69dc0002d049e7ae25cd50c52bc899
Autor:
Scott D. Bembenek, W. Patrick Walters, Neysa Nevins, Zied Gaieb, Michael K. Gilson, Michael Chiu, Chenghua Shao, Stephen K. Burley, Tara Mirzadegan, Rommie E. Amaro, Conor Parks, Millard H. Lambert, Michael K. Ameriks, Huanwang Yang
Publikováno v:
Journal of computer-aided molecular design, vol 33, iss 1
The Drug Design Data Resource aims to test and advance the state of the art in protein-ligand modeling, by holding community-wide blinded, prediction challenges. Here, we report on our third major round, Grand Challenge 3 (GC3). Held 2017–2018, GC3
Publikováno v:
Frontiers in Molecular Biosciences
Frontiers in Molecular Biosciences, Vol 7 (2020)
Frontiers in Molecular Biosciences, Vol 7 (2020)
Protein-ligand binding affinity is a key pharmacodynamic endpoint in drug discovery. Sole reliance on experimental design, make, and test cycles is costly and time consuming, providing an opportunity for computational methods to assist. Herein, we pr
Molecular Dynamics Electric Field Crystallization Simulations of Paracetamol Produce a New Polymorph
Autor:
Hsien-Hsin Tung, Zoltan K. Nagy, Shailendra Bordawekar, Conor Parks, Nandkishor K. Nere, Andy Koswara, Doraiswami Ramkrishna
Publikováno v:
Crystal Growth & Design. 17:3751-3765
Using molecular dynamics simulations, we demonstrate the ability of high intensity, 1.5 V/nm, static electric fields to induce the formation of a new polymorph of paracetamol, one of the most important fever and pain suppressants in the world. In the
Publikováno v:
Molecular Simulation. 43:714-723
We investigate the performance increase provided by the Intel® Xeon Phi™ coprocessor in multiple replica molecular dynamics applications using a novel parallelisation scheme. The benefits of the proposed parallelisation scheme are demonstrated by
Autor:
Shailendra Bordawekar, Nandkishor K. Nere, Hsien-Hsin Tung, Andy Koswara, Conor Parks, Zoltan K. Nagy, Doraiswami Ramkrishna
Publikováno v:
Molecular Pharmaceutics. 14:1023-1032
Nanocrystals are receiving increased attention for pharmaceutical applications due to their enhanced solubility relative to their micron-sized counterpart and, in turn, potentially increased bioavailability. In this work, a computational method is pr
Autor:
Conor Parks, Hsien-Hsin Tung, Zoltan K. Nagy, Doraiswami Ramkrishna, Andy Koswara, Nandkishor K. Nere, Frank DeVilbiss, Shailendra Bordawekar
Publikováno v:
Physical Chemistry Chemical Physics. 19:5285-5295
Current polymorph prediction methods, known as lattice energy minimization, seek to determine the crystal lattice with the lowest potential energy, rendering it unable to predict solvent dependent metastable form crystallization. Facilitated by embar
Autor:
conor parks, Zied Gaieb, Michael Chiu, Huanwang Yang, Chenghua Shao, W. Patrick Walters, Johanna M. Jansen, Georgia McGaughey, Richard A. Lewis, Scott D. Bembenek, Michael K. Ameriks, Tara Mirzadegan, Stephen K. Burley, Rommie Amaro, Michael Gilson
Publikováno v:
Journal of computer-aided molecular design, vol 34, iss 2
The Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided drug design through blinded ligand pose prediction and affinity challenges. Herein, we report on the results of Grand Challenge 4 (GC4). GC4 focused on prot
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4f4200f6a797b77dbbe2d3d207bd6f54
https://doi.org/10.26434/chemrxiv.11363006
https://doi.org/10.26434/chemrxiv.11363006
Autor:
Johanna M. Jansen, Zied Gaieb, Michael K. Gilson, Michael K. Ameriks, Rommie E. Amaro, Chenghua Shao, Tara Mirzadegan, W. Patrick Walters, Michael Chiu, Scott D. Bembenek, Conor Parks, Georgia B. McGaughey, Huanwang Yang, Stephen K. Burley, Richard A. Lewis
Publikováno v:
J Comput Aided Mol Des
The Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided drug design through blinded ligand pose prediction and affinity challenges. Herein, we report on the results of Grand Challenge 4 (GC4). GC4 focused on prot