Zobrazeno 1 - 10
of 321
pro vyhledávání: '"concave-convex nonlinearities"'
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-21 (2024)
Abstract In this paper, we study fractional p 1 ( x , ⋅ ) & p 2 ( x , ⋅ ) $p_{1}(x,\cdot )\& p_{2}(x,\cdot )$ -Laplacian Schrödinger-type equations for Robin boundary conditions. Under some suitable assumptions, we show that two solutions exist
Externí odkaz:
https://doaj.org/article/913b22beae2a400fa2ff28fd393c34bf
Autor:
Ping Yang, Xingyong Zhang
Publikováno v:
Electronic Research Archive, Vol 31, Iss 12, Pp 7473-7495 (2023)
We discuss a poly-Laplacian system involving concave-convex nonlinearities and parameters subject to the Dirichlet boundary condition on locally finite graphs. It is obtained that the system admits at least one nontrivial solution of positive energy
Externí odkaz:
https://doaj.org/article/0580ef1ce22f4517b7c7b5a1db3afbaa
Autor:
Chen Yang, Chun-Lei Tang
Publikováno v:
Communications in Analysis and Mechanics, Vol 15, Iss 4, Pp 638-657 (2023)
In this paper, we consider the following Schrödinger-Poisson system $ \begin{equation*} \qquad \left\{ \begin{array}{ll} -\Delta u+V(x)u+\phi u = |u|^{p-2}u+ \lambda K(x)|u|^{q-2}u\ \ \ &\ \rm in\; \mathbb{R}^{3}, \\ -\Delta \phi = u^2 \ \ \ &\ \
Externí odkaz:
https://doaj.org/article/d2ea0303317a48b4b80a964dfe38628d
Autor:
Xiaojie Guo, Zhiqing Han
Publikováno v:
AIMS Mathematics, Vol 8, Iss 11, Pp 27684-27711 (2023)
In this paper, we investigate the existence of solutions to a generalized quasilinear Schrödinger equation with concave-convex nonlinearities and potentials vanishing at infinity. Using the mountain pass theorem, we get the existence of a positive s
Externí odkaz:
https://doaj.org/article/8549f1567ad149acb63c6bf0c258fc93
Autor:
Changmu Chu, Zhongju He
Publikováno v:
Boundary Value Problems, Vol 2023, Iss 1, Pp 1-18 (2023)
Abstract In this paper, we study the existence of a class of p ( x ) $p(x)$ -Kirchhoff equation involving concave-convex nonlinearities. The main tools used are the perturbation technique, variational method, and a priori estimation.
Externí odkaz:
https://doaj.org/article/3baa3e1f1299458d8da7eaa601f34914
Publikováno v:
Mathematica Bohemica, Vol 147, Iss 2, Pp 155-168 (2022)
We study the existence and nonexistence of positive solutions of the nonlinear equation -\Delta_{p(x)} u = \lambda k(x) u^q \pm h(x) u^r \text{in} \Omega,\quad u=0 \text{on} \partial\Omega, \tag{\rm Q} where $\Omega\subset\mathbb{R}^N$, $N\geq2$, is
Externí odkaz:
https://doaj.org/article/e2e619c9615045349c548b2548726c32
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Advances in Difference Equations, Vol 2021, Iss 1, Pp 1-13 (2021)
Abstract A Kirchhoff-type problem with concave-convex nonlinearities is studied. By constrained variational methods on a Nehari manifold, we prove that this problem has a sign-changing solution with least energy. Moreover, we show that the energy lev
Externí odkaz:
https://doaj.org/article/4ee9a3692973422da9ddf8ee703f0e4a
Autor:
Anu Rani, Sarika Goyal
Publikováno v:
Electronic Journal of Differential Equations, Vol 2020, Iss 119,, Pp 1-25 (2020)
This article concerns the existence of multiple solutions of the polyharmonic system involving critical nonlinearities with sign-changing weight functions $$\displaylines{ (-\Delta)^mu = \lambda f(x) |u|^{r-2}u+ \frac{\beta}{\beta+\gamma} h(x) |
Externí odkaz:
https://doaj.org/article/e8b931f7fc2b43268c77d0ec5a43352a