Zobrazeno 1 - 10
of 1 003
pro vyhledávání: '"computational systems biology"'
Publikováno v:
Frontiers in Systems Biology, Vol 4 (2024)
Uncertainty is ubiquitous in biological systems. For example, since gene expression is intrinsically governed by noise, nature shows a fascinating degree of variability. If we want to use a model to predict the behaviour of such an intrinsically stoc
Externí odkaz:
https://doaj.org/article/33fa84c14742415c95f366bb2b4bb56c
Autor:
Erika Giuffrida, Chiara Bianca Maria Platania, Francesca Lazzara, Federica Conti, Nicoletta Marcantonio, Filippo Drago, Claudio Bucolo
Publikováno v:
Pharmaceuticals, Vol 17, Iss 10, p 1333 (2024)
Background: Glaucoma is a progressive optic neuropathy characterized by the neurodegeneration and death of retinal ganglion cells (RGCs), leading to blindness. Current glaucoma interventions reduce intraocular pressure but do not address retinal neur
Externí odkaz:
https://doaj.org/article/598b39965e3148b7b597d346bfd3ca63
Publikováno v:
Stem Cell Reports, Vol 18, Iss 1, Pp 6-12 (2023)
Summary: Our ability to understand and control stem cell biology is being augmented by developments on two fronts, our ability to collect more data describing cell state and our capability to comprehend these data using deep learning models. Here we
Externí odkaz:
https://doaj.org/article/f6523d205969497ab3065c3081c3e3bb
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Michelle Dedeo, Maanasi Garg
Publikováno v:
IEEE Access, Vol 9, Pp 85209-85216 (2021)
Using data from the MIT Physionet EEG database collected at the Children’s Hospital Boston, we identify a method of detecting seizures in ten pediatric patients at least thirty seconds before seizure onset by identifying significant preictal locati
Externí odkaz:
https://doaj.org/article/30c81968a28b4606869f62a781e9f3a6
Autor:
Carlos Vega
Publikováno v:
IEEE Access, Vol 9, Pp 97243-97250 (2021)
Advances in computer science have transformed the way artificial intelligence is employed in academia, with Machine Learning (ML) methods easily available to researchers from diverse areas thanks to intuitive frameworks that yield extraordinary resul
Externí odkaz:
https://doaj.org/article/83e8d074283740cf80f98c621c0b91c0
Autor:
Zhang, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Verlan, S., Konur, Savas, Hinze, T., Gheorghe, Marian
Yes
This chapter presents the Infobiotics Workbench (IBW), an integrated software suite developed for computational systems biology. The tool is built upon stochastic P systems, a probabilistic extension of P systems, as modelling framework. The
This chapter presents the Infobiotics Workbench (IBW), an integrated software suite developed for computational systems biology. The tool is built upon stochastic P systems, a probabilistic extension of P systems, as modelling framework. The
Externí odkaz:
http://hdl.handle.net/10454/18833
Publikováno v:
Frontiers in Molecular Biosciences, Vol 8 (2021)
Mathematical modeling allows using different formalisms to describe, investigate, and understand biological processes. However, despite the advent of high-throughput experimental techniques, quantitative information is still a challenge when looking
Externí odkaz:
https://doaj.org/article/700b4a3bb08a4295890e800c6d7c6452
Publikováno v:
Applied Sciences, Vol 12, Iss 19, p 10013 (2022)
The quantification of synergistic effects of multi-combination compounds is critical in developing “cocktails” that are efficacious. In this research, a method for in silico modeling and the quantification of synergistic effects of multi-combinat
Externí odkaz:
https://doaj.org/article/cfc15635887b492e8163f365f249040c
Autor:
Hui Xiao Chao, Randy I Fakhreddin, Hristo K Shimerov, Katarzyna M Kedziora, Rashmi J Kumar, Joanna Perez, Juanita C Limas, Gavin D Grant, Jeanette Gowen Cook, Gaorav P Gupta, Jeremy E Purvis
Publikováno v:
Molecular Systems Biology, Vol 15, Iss 3, Pp 1-19 (2019)
Abstract The cell cycle is canonically described as a series of four consecutive phases: G1, S, G2, and M. In single cells, the duration of each phase varies, but the quantitative laws that govern phase durations are not well understood. Using time
Externí odkaz:
https://doaj.org/article/81290e9fcfee4492b0f34caf81dfef6d