Zobrazeno 1 - 10
of 153
pro vyhledávání: '"computable phenotype"'
Autor:
Xing He, Ruoqi Wei, Yu Huang, Zhaoyi Chen, Tianchen Lyu, Sarah Bost, Jiayi Tong, Lu Li, Yujia Zhou, Zhao Li, Jingchuan Guo, Huilin Tang, Fei Wang, Steven DeKosky, Hua Xu, Yong Chen, Rui Zhang, Jie Xu, Yi Guo, Yonghui Wu, Jiang Bian
Publikováno v:
Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, Vol 16, Iss 3, Pp n/a-n/a (2024)
Abstract INTRODUCTION Alzheimer's disease (AD) is often misclassified in electronic health records (EHRs) when relying solely on diagnosis codes. This study aimed to develop a more accurate, computable phenotype (CP) for identifying AD patients using
Externí odkaz:
https://doaj.org/article/e1c711a1bfcd4a0099db1aaaeb9b8780
Autor:
Majid Afshar, Brihat Sharma, Sameer Bhalla, Hale M. Thompson, Dmitriy Dligach, Randy A. Boley, Ekta Kishen, Alan Simmons, Kathryn Perticone, Niranjan S. Karnik
Publikováno v:
Addiction Science & Clinical Practice, Vol 16, Iss 1, Pp 1-11 (2021)
Abstract Background Opioid misuse screening in hospitals is resource-intensive and rarely done. Many hospitalized patients are never offered opioid treatment. An automated approach leveraging routinely captured electronic health record (EHR) data may
Externí odkaz:
https://doaj.org/article/a4ea7ebb4bed4e259e99f200a8b04b61
Autor:
Brihat Sharma, Dmitriy Dligach, Kristin Swope, Elizabeth Salisbury-Afshar, Niranjan S. Karnik, Cara Joyce, Majid Afshar
Publikováno v:
BMC Medical Informatics and Decision Making, Vol 20, Iss 1, Pp 1-11 (2020)
Abstract Background Automated de-identification methods for removing protected health information (PHI) from the source notes of the electronic health record (EHR) rely on building systems to recognize mentions of PHI in text, but they remain inadequ
Externí odkaz:
https://doaj.org/article/9818817fb4af40c2a3192d093fa69557
Autor:
Alanna M. Chamberlain, Véronique L. Roger, Peter A. Noseworthy, Lin Y. Chen, Susan A. Weston, Ruoxiang Jiang, Alvaro Alonso
Publikováno v:
Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease, Vol 11, Iss 7 (2022)
Background Electronic medical records are increasingly used to identify disease cohorts; however, computable phenotypes using electronic medical record data are often unable to distinguish between prevalent and incident cases. Methods and Results We
Externí odkaz:
https://doaj.org/article/b4df145632924811a5858b90528b81cc
Autor:
Jove Graham, Andy Iverson, Joao Monteiro, Katherine Weiner, Kara Southall, Katherine Schiller, Mudit Gupta, Edgar P. Simard
Publikováno v:
International Journal of Cardiology: Heart & Vasculature, Vol 39, Iss , Pp 100974- (2022)
Background: Use of existing data in electronic health records (EHRs) could be used more extensively to better leverage real world data for clinical studies, but only if standard, reliable processes are developed. Numerous computable phenotypes have b
Externí odkaz:
https://doaj.org/article/f609fc3ff7594cf49739606ad789d317
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ritu Khare, Michael D. Kappelman, Charles Samson, Jennifer Pyrzanowski, Rahul A. Darwar, Christopher B. Forrest, Charles C. Bailey, Peter Margolis, Amanda Dempsey, And the PEDSnet Computable Phenotype Working Group
Publikováno v:
Learning Health Systems, Vol 4, Iss 4, Pp n/a-n/a (2020)
Abstract Objectives To develop and evaluate the classification accuracy of a computable phenotype for pediatric Crohn's disease using electronic health record data from PEDSnet, a large, multi‐institutional research network and Learning Health Syst
Externí odkaz:
https://doaj.org/article/114bacda78394e348d61ca9cdaf7852b
Autor:
Mei‐Sing Ong, Jeffrey G. Klann, Kueiyu Joshua Lin, Bradley A. Maron, Shawn N. Murphy, Marc D. Natter, Kenneth D. Mandl
Publikováno v:
Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease, Vol 9, Iss 19 (2020)
Background Real‐world healthcare data are an important resource for epidemiologic research. However, accurate identification of patient cohorts—a crucial first step underpinning the validity of research results—remains a challenge. We developed
Externí odkaz:
https://doaj.org/article/3c046c823a4c482b8ec99a7cc689b7c3