Zobrazeno 1 - 10
of 5 482
pro vyhledávání: '"complex geometry"'
Autor:
Rougé, Pierre1,2 (AUTHOR) pierre.rouge@creatis.insa-lyon.fr, Passat, Nicolas1 (AUTHOR), Merveille, Odyssée1 (AUTHOR)
Publikováno v:
PLoS ONE. 12/5/2024, Vol. 19 Issue 12, p1-20. 20p.
Autor:
Iturrioz-Zabala, Amaia, Vázquez-Martínez, Lexuri, Rodriguez-Rubio, Iker, Arana-Lopez, Maider, Aguilar-Soria, David
Publikováno v:
DYNA - Ingeniería e Industria; Nov2024, Vol. 99 Issue 6, p651-657, 7p
Autor:
Petha Sethuraman, Vignesh Ram1 (AUTHOR), Yang, Yosheph2,3 (AUTHOR), You, Hojun1 (AUTHOR), Kim, Jae Gang1 (AUTHOR) jaegkim@sejong.ac.kr
Publikováno v:
Aerospace Science & Technology. Dec2024:Part 2, Vol. 155, pN.PAG-N.PAG. 1p.
Autor:
Rendall, Joseph1 (AUTHOR) rendalljd@ornl.gov, Tamraparni, Achutha1 (AUTHOR), Shen, Zhenglai1 (AUTHOR), Hun, Diana1 (AUTHOR), Shrestha, Som1 (AUTHOR) shresthass@ornl.gov
Publikováno v:
International Communications in Heat & Mass Transfer. Dec2024:Part B, Vol. 159, pN.PAG-N.PAG. 1p.
Autor:
Liu, Yang (AUTHOR), Otoguro, Yuto (AUTHOR), Takizawa, Kenji1 (AUTHOR) Kenji.Takizawa@tafsm.org, Tezduyar, Tayfun E.2,3 (AUTHOR)
Publikováno v:
Computational Mechanics. Dec2024, p1-17.
Autor:
Smith, Philip, Kurlin, Vitaliy
Publikováno v:
Journal of Applied and Computational Topology, 2024
Persistent homology is a popular and useful tool for analysing finite metric spaces, revealing features that can be used to distinguish sets of unlabeled points and as input into machine learning pipelines. The famous stability theorem of persistent
Externí odkaz:
http://arxiv.org/abs/2202.00577
Autor:
Gimperlein, Heiko1 (AUTHOR) heiko.gimperlein@uibk.ac.at, Krötz, Bernhard1,2 (AUTHOR) bkroetz@gmx.de, Roncal, Luz3,4,5 (AUTHOR) lroncal@bcamath.org, Thangavelu, Sundaram6 (AUTHOR) veluma@iisc.ac.in
Publikováno v:
Journal of Functional Analysis. Feb2025, Vol. 288 Issue 3, pN.PAG-N.PAG. 1p.
Autor:
Wang, Yizheng1,2 (AUTHOR) wang-yz19@tsinghua.org.cn, Sun, Jia3 (AUTHOR), Bai, Jinshuai1,4,5 (AUTHOR), Anitescu, Cosmin2 (AUTHOR), Eshaghi, Mohammad Sadegh6 (AUTHOR), Zhuang, Xiaoying6 (AUTHOR) xiaoying.zhuang@gmail.com, Rabczuk, Timon2 (AUTHOR) timon.rabczuk@uni-weimar.de, Liu, Yinghua1 (AUTHOR) yhliu@mail.tsinghua.edu.cn
Publikováno v:
Computer Methods in Applied Mechanics & Engineering. Jan2025:Part B, Vol. 433, pN.PAG-N.PAG. 1p.
Autor:
Clemens, Herbert
Let $Y$ be a projective submanifold of the total space of the inverse of a very ample line bundle $\pi:L^{-1}\rightarrow B$ over a projective manifold $B$. Any section of $L^{-1}\rightarrow B$ is isomorphic to $B$ and the Hodge numbers of any proper
Externí odkaz:
http://arxiv.org/abs/2005.14633