Zobrazeno 1 - 10
of 16
pro vyhledávání: '"clustering in graphs"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Digital Medievalist, Vol 9, Iss 0 (2014)
This article illustrates how mathematical and statistical tools designed to handle relational data may be useful to help decipher the most important features and defects of a large historical database and to gain knowledge about a corpus made of seve
Externí odkaz:
https://doaj.org/article/7ed1e00c23a9408cb25fc60885b01614
Autor:
Papadopoulos, Andreas N.
Includes bibliographical references (p. 117-126). Number of sources in the bibliography:102 Thesis (Ph. D.) -- University of Cyprus, Faculty of Pure and Applied Sciences, Department of Computer Science, 2017. The University of Cyprus Library holds th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______4485::210c0f7da6456b7855a73af57026c3b4
https://gnosis.library.ucy.ac.cy/handle/7/39736
https://gnosis.library.ucy.ac.cy/handle/7/39736
Autor:
Giacomo Fiumara, Athanasios V. Vasilakos, Giuseppe M. L. Sarné, Sebastiano Piccolo, Santa Agreste, Pasquale De Meo, Domenico Rosaci, Giuseppe Piccione
Detecting communities in graphs is a fundamental tool to understand the structure of Web-based systems and predict their evolution. Many community detection algorithms are designed to process undirected graphs (i.e., graphs with bidirectional edges)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7fc357d122b8ece40683a628e00ed5ea
http://hdl.handle.net/11570/3116411
http://hdl.handle.net/11570/3116411
Publikováno v:
Network Science
Network Science, Cambridge Journals, 2015, 3 (03), pp.408-444. ⟨10.1017/nws.2015.9⟩
Bothorel, C, Cruz, J D, Magnani, M & Micenková, B 2015, ' Clustering attributed graphs : models, measures and methods ', Network Science, vol. 3, no. 03, pp. 408-444 . https://doi.org/10.1017/nws.2015.9
Network Science, Cambridge Journals, 2015, 3 (03), pp.408-444. 〈10.1017/nws.2015.9〉
Network Science, Cambridge Journals, 2015, 3 (03), pp.408-444. ⟨10.1017/nws.2015.9⟩
Bothorel, C, Cruz, J D, Magnani, M & Micenková, B 2015, ' Clustering attributed graphs : models, measures and methods ', Network Science, vol. 3, no. 03, pp. 408-444 . https://doi.org/10.1017/nws.2015.9
Network Science, Cambridge Journals, 2015, 3 (03), pp.408-444. 〈10.1017/nws.2015.9〉
Clustering a graph, i.e., assigning its nodes to groups, is an important operation whose best known application is the discovery of communities in social networks. Graph clustering and community detection have traditionally focused on graphs without
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a76e0342d3cff34b31eaf16b6df3875a
https://hal.archives-ouvertes.fr/hal-01257833
https://hal.archives-ouvertes.fr/hal-01257833
Autor:
Stefano Lonardi, Qiaofeng Yang
Publikováno v:
Yang, Qiaofeng; & Lonardi, Stefano. (2007). A parallel edge-betweenness clustering tool for protein-protein Interaction networks. International Journal of Data Mining and Bioinformatics, 1(3), 241-247. UC Riverside: Retrieved from: http://www.escholarship.org/uc/item/9xq9d6jx
The increasing availability of protein-protein interaction graphs (PPI) requires new efficient tools capable of extracting valuable biological knowledge from these networks. Among the wide range of clustering algorithms, Girvan and Newman's edge betw
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Francisco Escolano, Miguel Angel Lozano, Miguel Cazorla, Pablo Suau, Boyan Bonev, Wendy Aguilar
Publikováno v:
Scopus-Elsevier
Graph-Based Representations in Pattern Recognition ISBN: 9783540729020
GbRPR
Graph-Based Representations in Pattern Recognition ISBN: 9783540729020
GbRPR
In this paper, we propose a novel method for the unsupervised clustering of graphs in the context of the constellation approach to object recognition. Such method is an EM central clustering algorithm which builds prototypical graphs on the basis of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::513d5615451aafc4c9333fadc491e7a5
http://www.scopus.com/inward/record.url?eid=2-s2.0-38149137333&partnerID=MN8TOARS
http://www.scopus.com/inward/record.url?eid=2-s2.0-38149137333&partnerID=MN8TOARS