Zobrazeno 1 - 10
of 102
pro vyhledávání: '"clinical de-identification"'
Objective: Neural network de-identification studies have focused on individual datasets. These studies assume the availability of a sufficient amount of human-annotated data to train models that can generalize to corresponding test data. In real-worl
Externí odkaz:
http://arxiv.org/abs/2102.08517
Publikováno v:
In Knowledge-Based Systems 15 February 2021 213
Autor:
Catelli, Rosario, Gargiulo, Francesco, Casola, Valentina, De Pietro, Giuseppe, Fujita, Hamido, Esposito, Massimo
Publikováno v:
In Applied Soft Computing Journal December 2020 97 Part A
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Tanmoy Paul, Md Kamruz Zaman Rana, Preethi Aishwarya Tautam, Teja Venkat Pavan Kotapati, Yaswitha Jampani, Nitesh Singh, Humayera Islam, Vasanthi Mandhadi, Vishakha Sharma, Michael Barnes, Richard D. Hammer, Abu Saleh Mohammad Mosa
Publikováno v:
Frontiers in Digital Health, Vol 4 (2022)
BackgroundElectronic health record (EHR) systems contain a large volume of texts, including visit notes, discharge summaries, and various reports. To protect the confidentiality of patients, these records often need to be fully de-identified before c
Externí odkaz:
https://doaj.org/article/3828d9965431427887fb90453f48bc56
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Tanmoy Paul, Humayera Islam, Nitesh Singh, Yaswitha Jampani, Teja Venkat Pavan Kotapati, Preethi Aishwarya Tautam, Md Kamruz Zaman Rana, Vasanthi Mandhadi, Vishakha Sharma, Michael Barnes, Richard D. Hammer, Abu Saleh Mohammad Mosa
Publikováno v:
Applied Sciences, Vol 12, Iss 19, p 9976 (2022)
The de-identification of clinical reports is essential to protect the confidentiality of patients. The natural-language-processing-based named entity recognition (NER) model is a widely used technique of automatic clinical de-identification. The perf
Externí odkaz:
https://doaj.org/article/e0a2cb981dc5479694e7a9dccdcb2ccd
Publikováno v:
Knowledge-based systems 213 (2021). doi:10.1016/j.knosys.2020.106649
info:cnr-pdr/source/autori:Catelli R.; Casola V.; De Pietro G.; Fujita H.; Esposito M./titolo:Combining contextualized word representation and sub-document level analysis through Bi-LSTM+CRF architecture for clinical de-identification/doi:10.1016%2Fj.knosys.2020.106649/rivista:Knowledge-based systems/anno:2021/pagina_da:/pagina_a:/intervallo_pagine:/volume:213
info:cnr-pdr/source/autori:Catelli R.; Casola V.; De Pietro G.; Fujita H.; Esposito M./titolo:Combining contextualized word representation and sub-document level analysis through Bi-LSTM+CRF architecture for clinical de-identification/doi:10.1016%2Fj.knosys.2020.106649/rivista:Knowledge-based systems/anno:2021/pagina_da:/pagina_a:/intervallo_pagine:/volume:213
Clinical de-identification aims to identify Protected Health Information in clinical data, enabling data sharing and publication. First automatic de-identification systems were based on rules or on machine learning methods, limited by language change
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e1cfdf98435ce7c3994d43ddd2c4ba39
http://hdl.handle.net/11588/837696
http://hdl.handle.net/11588/837696
Autor:
Massimo Esposito, Francesco Gargiulo, Valentina Casola, Hamido Fujita, Giuseppe De Pietro, Rosario Catelli
Publikováno v:
Applied Soft Computing
The COrona VIrus Disease 19 (COVID-19) pandemic required the work of all global experts to tackle it. Despite the abundance of new studies, privacy laws prevent their dissemination for medical investigations: through clinical de-identification, the P
Autor:
Azzouzi, Mohamed El1 (AUTHOR) mohamed.elazzouzi@univ-rennes.fr, Coatrieux, Gouenou2 (AUTHOR), Bellafqira, Reda2 (AUTHOR), Delamarre, Denis3 (AUTHOR), Riou, Christine3 (AUTHOR), Oubenali, Naima1 (AUTHOR), Cabon, Sandie1 (AUTHOR), Cuggia, Marc4 (AUTHOR), Bouzillé, Guillaume4 (AUTHOR)
Publikováno v:
BMC Medical Informatics & Decision Making. 2/16/2024, Vol. 24 Issue 1, p1-18. 18p.