Zobrazeno 1 - 10
of 37
pro vyhledávání: '"bi-Hamiltonian geometry"'
Autor:
Igor Mencattini, Gregorio Falqui
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We reconsider the rational Calogero–Moser system from the point of view of bi-Hamiltonian geometry. By using geometrical tools of the latter, we explicitly construct set(s) of spectral canonical coordinates, that is, complete sets of Darboux coordi
Autor:
Andrey V. Tsiganov
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 9, p 015 (2013)
We discuss trivial deformations of the canonical Poisson brackets associated with the Toda lattices, relativistic Toda lattices, Henon-Heiles, rational Calogero-Moser and Ruijsenaars-Schneider systems and apply one of these deformations to construct
Externí odkaz:
https://doaj.org/article/66af2526a2a9496dabcf762a57de05b6
Autor:
Andrey V. Tsiganov
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 8, p 012 (2012)
A rigid body in an ideal fluid is an important example of Hamiltonian systems on a dual to the semidirect product Lie algebra e(3)=so(3)⋉R^3. We present the bi-Hamiltonian structure and the corresponding variables of separation on this phase space
Externí odkaz:
https://doaj.org/article/743502984a0d4fba9feecf2b32a62713
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 8, p 012 (2012)
A rigid body in an ideal fluid is an important example of Hamiltonian systems on a dual to the semidirect product Lie algebra $e(3) = so(3)\ltimes\mathbb R^3$. We present the bi-Hamiltonian structure and the corresponding variables of separation on t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6d5db5d23acbb553b6de2d098d1a78e0
http://arxiv.org/abs/1101.4345
http://arxiv.org/abs/1101.4345
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We show that the bi-Hamiltonian structure of the rational n-particle (attractive) Calogero-Moser system can be obtained by means of a double projection from a very simple Poisson pair on the cotangent bundle of gl(n,R). The relation with the Lax form
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9d7760c2e6ef71adf40c72813cbe9e04
http://hdl.handle.net/10281/8341
http://hdl.handle.net/10281/8341
Autor:
Fabio Musso, Gregorio Falqui
We address the study of the classical Gaudin spin model from the bi-Hamiltonian point of view. We describe in details the sl(2) three particle case.
Comment: 9 pages. Talk given at "SPT 2002: Symmetry and Perturbation Theory", Cala Gonone, May 2
Comment: 9 pages. Talk given at "SPT 2002: Symmetry and Perturbation Theory", Cala Gonone, May 2
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b0ce7bfe0e0d0de24bf739282e642d21
http://hdl.handle.net/10281/20271
http://hdl.handle.net/10281/20271
Publikováno v:
Scopus-Elsevier
We use ideas of the geometry of bihamiltonian manifolds, developed by Gel'fand and Zakharevich, to study the KP equations. In this approach they have the form of local conservation laws, and can be traded for a system of ordinary differential equatio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::330ced93338118d2a9fa98c98c6c9b8d
http://hdl.handle.net/10281/18562
http://hdl.handle.net/10281/18562