Zobrazeno 1 - 10
of 58
pro vyhledávání: '"b-matrices"'
Autor:
Yuanjie Geng, Deshu Sun
Publikováno v:
AIMS Mathematics, Vol 8, Iss 11, Pp 27052-27064 (2023)
In this paper, an error bound for linear complementarity problems of strong $ SDD $$ _{1} $ matrices is given. By properties of $ SDD $$ _{1} $ matrices, a new subclass of $ P $-matrices called $ SDD_{1} $-$ B $ is presented, which contains $ B $-mat
Externí odkaz:
https://doaj.org/article/0599150541a6415aaf8a0cb9a6e22303
Autor:
Hongmin Mo, Yingxue Dong
Publikováno v:
AIMS Mathematics, Vol 8, Iss 10, Pp 23889-23899 (2023)
In this paper, a new error bound for the linear complementarity problems of $ B- $matrices which is a subclass of the $ P- $matrices is presented. Theoretical analysis and numerical example illustrate that the new error bound improves some existing r
Externí odkaz:
https://doaj.org/article/de31b4334d2249d38c210c3cf7c036ac
Autor:
Yingxia Zhao, Deshu Sun
Publikováno v:
Journal of Inequalities and Applications, Vol 2022, Iss 1, Pp 1-18 (2022)
Abstract Global error bounds of the extended vertical linear complementarity problems for Dashnic–Zusmanovich (DZ) matrices and Dashnic–Zusmanovich-B (DZ-B) matrices are presented, respectively. The obtained error bounds are sharper than those of
Externí odkaz:
https://doaj.org/article/dc7a87e4618842f7b2692bd131d1a219
Autor:
Deshu Sun
Publikováno v:
AIMS Mathematics, Vol 7, Iss 2, Pp 1896-1906 (2022)
Using the range for the infinity norm of inverse matrix of a strictly diagonally dominant M-matrix, some new error bounds for the linear complementarity problem are obtained when the involved matrix is a BS-matrix. Theory analysis and numerical examp
Externí odkaz:
https://doaj.org/article/ca2836db0a134a319eb6d80fdaad9fe1
Publikováno v:
AIMS Mathematics, Vol 7, Iss 2, Pp 3239-3249 (2022)
S-SDDS-B matrices is a subclass of P-matrices which contains B-matrices. New error bound of the linear complementarity problem for S-SDDS-B matrices is presented, which improves the corresponding result in [1]. Numerical examples are given to verify
Externí odkaz:
https://doaj.org/article/ff20fdd9e6bc4f5fac0ff0189631028c
Autor:
Xinnian Song, Lei Gao
Publikováno v:
AIMS Mathematics, Vol 6, Iss 10, Pp 10846-10860 (2021)
In this paper, we introduce a new subclass of P-matrices called Cvetković-Kostić-Varga type B-matrices (CKV-type B-matrices), which contains DZ-type-B-matrices as a special case, and present an infinity norm bound for the inverse of CKV-type B-matr
Externí odkaz:
https://doaj.org/article/9b65b94b957841cb8d27205c31119e47
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Open Mathematics, Vol 15, Iss 1, Pp 978-986 (2017)
Some new error bounds for the linear complementarity problems are obtained when the involved matrices are weakly chained diagonally dominant B-matrices. Numerical examples are given to show the effectiveness of the proposed bounds.
Externí odkaz:
https://doaj.org/article/17fe1692d5284834ac144dc0fc138493
Autor:
Deshu Sun
Publikováno v:
AIMS Mathematics, Vol 7, Iss 2, Pp 1896-1906 (2022)
Using the range for the infinity norm of inverse matrix of a strictly diagonally dominant $ M $-matrix, some new error bounds for the linear complementarity problem are obtained when the involved matrix is a $ B^S $-matrix. Theory analysis and numeri