Zobrazeno 1 - 10
of 5 912
pro vyhledávání: '"automatic transcription"'
Source separation is the process of isolating individual sounds in an auditory mixture of multiple sounds [1], and has a variety of applications ranging from speech enhancement and lyric transcription [2] to digital audio production for music. Furthe
Externí odkaz:
http://arxiv.org/abs/2412.06703
Autor:
Wollin-Giering, Susanne1 susanne.wollin-giering@tu-berlin.de, Hoffmann, Markus1 markus.hoffmann@tu-berlin.de, Höfting, Jonas1 j.hoefting@tu-berlin.de, Ventzke, Carla2 c.ventzke@posteo.de
Publikováno v:
Forum: Qualitative Social Research / Qualitative Sozialforschung. Jan2024, Vol. 25 Issue 1, p335-371. 37p.
Autor:
Riley, Xavier, Dixon, Simon
The Charlie Parker Omnibook is a cornerstone of jazz music education, described by pianist Ethan Iverson as "the most important jazz education text ever published". In this work we propose a new transcription pipeline and explore the extent to which
Externí odkaz:
http://arxiv.org/abs/2405.16687
This paper addresses spoken language identification (SLI) and speech recognition of multilingual broadcast and institutional speech, real application scenarios that have been rarely addressed in the SLI literature. Observing that in these domains lan
Externí odkaz:
http://arxiv.org/abs/2406.09290
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Wang, Yuan1 (AUTHOR) wangyuan@njxzc.edu.cn
Publikováno v:
Journal of Intelligent & Fuzzy Systems. 2023, Vol. 45 Issue 5, p8441-8448. 8p.
The mridangam is a double-headed percussion instrument that plays a key role in Carnatic music concerts. This paper presents a novel automatic transcription algorithm to classify the strokes played on the mridangam. Onset detection is first performed
Externí odkaz:
http://arxiv.org/abs/2211.15185
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this paper, we propose a new dataset named EGDB, that con-tains transcriptions of the electric guitar performance of 240 tab-latures rendered with different tones. Moreover, we benchmark theperformance of two well-known transcription models propos
Externí odkaz:
http://arxiv.org/abs/2202.09907
Publikováno v:
JILTECH: Journal International of Lingua & Technology; 2024, Vol. 3 Issue 2, p425-440, 16p