Zobrazeno 1 - 10
of 47 660
pro vyhledávání: '"and, Ranade"'
Publikováno v:
FRPT - Education Industry Snapshot. 11/14/2024, p14-15. 2p.
Autor:
Lahiri, Nayanjot, author
Publikováno v:
Archaeology and the Public Purpose : Writings on and by M.N. Deshpande, 2021.
Externí odkaz:
https://doi.org/10.1093/oso/9780190130480.003.0025
Autor:
Bach, Maria maria.bach@kcl.ac.uk
Publikováno v:
European Journal of the History of Economic Thought. Apr2018, Vol. 25 Issue 2, p327-356. 30p. 1 Diagram, 1 Chart.
Autor:
Adams, John1
Publikováno v:
Journal of Economic Issues. Jun71, Vol. 5 Issue 2, p80. 13p.
Publikováno v:
FRPT - Hotels & Hospitality Industry Snapshot. 12/19/2024, p14-14. 3/4p.
Autor:
Devare, Aparna, author
Publikováno v:
India and Civilizational Futures : Backwaters Collective on Metaphysics and Politics II, 2019.
Externí odkaz:
https://doi.org/10.1093/oso/9780199499069.003.0008
Graph Neural Networks (GNNs) have gained significant traction for simulating complex physical systems, with models like MeshGraphNet demonstrating strong performance on unstructured simulation meshes. However, these models face several limitations, i
Externí odkaz:
http://arxiv.org/abs/2411.17164
Human-computer interaction (HCI) has been a widely researched area for many years, with continuous advancements in technology leading to the development of new techniques that change the way we interact with computers. With the recent advent of power
Externí odkaz:
http://arxiv.org/abs/2411.04263
Autor:
Anderson, Eric, Fritz, Jonathan, Lee, Austin, Li, Bohou, Lindblad, Mark, Lindeman, Henry, Meyer, Alex, Parmar, Parth, Ranade, Tanvi, Shah, Mehul A., Sowell, Benjamin, Tecuci, Dan, Thapliyal, Vinayak, Welsh, Matt
LLMs demonstrate an uncanny ability to process unstructured data, and as such, have the potential to go beyond search and run complex, semantic analyses at scale. We describe the design of an unstructured analytics system, Aryn, and the tenets and us
Externí odkaz:
http://arxiv.org/abs/2409.00847
Autor:
Nidhan, Sheel, Jiang, Haoliang, Ghule, Lalit, Umphrey, Clancy, Ranade, Rishikesh, Pathak, Jay
In this paper, we propose a domain-decomposition-based deep learning (DL) framework, named transient-CoMLSim, for accurately modeling unsteady and nonlinear partial differential equations (PDEs). The framework consists of two key components: (a) a co
Externí odkaz:
http://arxiv.org/abs/2408.14461