Zobrazeno 1 - 10
of 67 202
pro vyhledávání: '"and, Prabhu"'
Autor:
Vellaisamy, Prabhu, Nair, Harideep, Kang, Thomas, Ni, Yichen, Fan, Haoyang, Qi, Bin, Chen, Jeff, Blanton, Shawn, Shen, John Paul
The increasing complexity of deep neural networks (DNNs) poses significant challenges for edge inference deployment due to resource and power constraints of edge devices. Recent works on unary-based matrix multiplication hardware aim to leverage data
Externí odkaz:
http://arxiv.org/abs/2412.19002
Temporal Neural Networks (TNNs), a special class of spiking neural networks, draw inspiration from the neocortex in utilizing spike-timings for information processing. Recent works proposed a microarchitecture framework and custom macro suite for des
Externí odkaz:
http://arxiv.org/abs/2412.17977
Autor:
Nair, Harideep, Vellaisamy, Prabhu, Chen, Albert, Finn, Joseph, Li, Anna, Trivedi, Manav, Shen, John Paul
General matrix multiplication (GEMM) is a ubiquitous computing kernel/algorithm for data processing in diverse applications, including artificial intelligence (AI) and deep learning (DL). Recent shift towards edge computing has inspired GEMM architec
Externí odkaz:
http://arxiv.org/abs/2412.17966
Autor:
Vellaisamy, Prabhu, Nair, Harideep, Finn, Joseph, Trivedi, Manav, Chen, Albert, Li, Anna, Lin, Tsung-Han, Wang, Perry, Blanton, Shawn, Shen, John Paul
General Matrix Multiplication (GEMM) is a ubiquitous compute kernel in deep learning (DL). To support energy-efficient edge-native processing, new GEMM hardware units have been proposed that operate on unary encoded bitstreams using much simpler hard
Externí odkaz:
http://arxiv.org/abs/2412.17955
Autor:
Chichura, P. M., Rahlin, A., Anderson, A. J., Ansarinejad, B., Archipley, M., Balkenhol, L., Benabed, K., Bender, A. N., Benson, B. A., Bianchini, F., Bleem, L. E., Bouchet, F. R., Bryant, L., Camphuis, E., Carlstrom, J. E., Chang, C. L., Chaubal, P., Chokshi, A., Chou, T. -L., Coerver, A., Crawford, T. M., Daley, C., de Haan, T., Dibert, K. R., Dobbs, M. A., Doohan, M., Doussot, A., Dutcher, D., Everett, W., Feng, C., Ferguson, K. R., Fichman, K., Foster, A., Galli, S., Gambrel, A. E., Gardner, R. W., Ge, F., Goeckner-Wald, N., Gualtieri, R., Guidi, F., Guns, S., Halverson, N. W., Hivon, E., Holder, G. P., Holzapfel, W. L., Hood, J. C., Hryciuk, A., Huang, N., Kéruzoré, F., Khalife, A. R., Kim, J., Knox, L., Korman, M., Kornoelje, K., Kuo, C. -L., Levy, K., Lowitz, A. E., Lu, C., Maniyar, A., Marrone, D. P., Martsen, E. S., Menanteau, F., Millea, M., Montgomery, J., Nakato, Y., Natoli, T., Noble, G. I., Omori, Y., Padin, S., Pan, Z., Paschos, P., Phadke, K. A., Pollak, A. W., Prabhu, K., Quan, W., Rahimi, M., Reichardt, C. L., Rouble, M., Ruhl, J. E., Schiappucci, E., Sobrin, J. A., Stark, A. A., Stephen, J., Tandoi, C., Thorne, B., Trendafilova, C., Umilta, C., Veitch-Michaelis, J., Vieira, J. D., Vitrier, A., Wan, Y., Whitehorn, N., Wu, W. L. K., Young, M. R., Zagorski, K., Zebrowski, J. A.
We present improvements to the pointing accuracy of the South Pole Telescope (SPT) using machine learning. The ability of the SPT to point accurately at the sky is limited by its structural imperfections, which are impacted by the extreme weather at
Externí odkaz:
http://arxiv.org/abs/2412.15167
Autor:
Chadwick, Jason D., Guerreschi, Gian Giacomo, Luthi, Florian, Mądzik, Mateusz T., Mohiyaddin, Fahd A., Prabhu, Prithviraj, Schmitz, Albert T., Litteken, Andrew, Premaratne, Shavindra, Bishop, Nathaniel C., Clarke, James S.
Exchange-only (EO) spin qubits in quantum dots offer an expansive design landscape for architecting scalable device layouts. The study of two-EO-qubit operations, which involve six electrons in six quantum dots, has so far been limited to a small num
Externí odkaz:
http://arxiv.org/abs/2412.14918
Autor:
Ghosh, Adhiraj, Dziadzio, Sebastian, Prabhu, Ameya, Udandarao, Vishaal, Albanie, Samuel, Bethge, Matthias
Traditional fixed test sets fall short in evaluating open-ended capabilities of foundation models. To address this, we propose ONEBench(OpeN-Ended Benchmarking), a new testing paradigm that consolidates individual evaluation datasets into a unified,
Externí odkaz:
http://arxiv.org/abs/2412.06745
Autor:
Dziadzio, Sebastian, Udandarao, Vishaal, Roth, Karsten, Prabhu, Ameya, Akata, Zeynep, Albanie, Samuel, Bethge, Matthias
Model merging combines multiple expert models - finetuned from a base foundation model on diverse tasks and domains - into a single, more capable model. However, most existing model merging approaches assume that all experts are available simultaneou
Externí odkaz:
http://arxiv.org/abs/2412.06712
Autor:
Flynn, John, Broxton, Michael, Murmann, Lukas, Chai, Lucy, DuVall, Matthew, Godard, Clément, Heal, Kathryn, Kaza, Srinivas, Lombardi, Stephen, Luo, Xuan, Achar, Supreeth, Prabhu, Kira, Sun, Tiancheng, Tsai, Lynn, Overbeck, Ryan
We present a novel neural algorithm for performing high-quality, high-resolution, real-time novel view synthesis. From a sparse set of input RGB images or videos streams, our network both reconstructs the 3D scene and renders novel views at 1080p res
Externí odkaz:
http://arxiv.org/abs/2411.16680
Addressing data integrity challenges, such as unlearning the effects of data poisoning after model training, is necessary for the reliable deployment of machine learning models. State-of-the-art influence functions, such as EK-FAC, often fail to accu
Externí odkaz:
http://arxiv.org/abs/2411.13731