Zobrazeno 1 - 10
of 5 536
pro vyhledávání: '"amenable group"'
Autor:
Li, Xianqiang, Luo, Xiaofang
For the countable discrete amenable group actions, we calculate the mean Hausdorff dimensions of three types of infinite dimensional fractal systems, the self-similar systems, homogeneous systems in the infinite-dimensional torus, and the infinite di
Externí odkaz:
http://arxiv.org/abs/2407.13489
In this paper, we study the properties of the scaled packing topological pressures for topological dynamical system $(X,G)$, where $G$ is a countable discrete infinite amenable group. We show that the scaled packing topological pressures can be deter
Externí odkaz:
http://arxiv.org/abs/2407.13202
We extend the classical Baire category approach, used in proving the finite generator theorem of Krieger, the homomorphism theorem of Sinai and the isomorphism theorem of Ornstein, applying a similar reasoning to the case of actions of countably infi
Externí odkaz:
http://arxiv.org/abs/2406.13004
In this paper, we first prove the variational principle for amenable packing topological pressure. Then we obtain an inequality concerning amenable packing pressure for factor maps. Finally, we show that the equality about packing topological pressur
Externí odkaz:
http://arxiv.org/abs/2405.15212
Autor:
Scielzo, Antonio M.
A result by Ornstein and Weiss states that a free and measure-preserving action of an amenable group on a probability space yields a decomposition of the space in disjoint images, up to a small error, analogous to the one given by the Rokhlin lemma i
Externí odkaz:
http://arxiv.org/abs/2402.10112
Autor:
Hedges, C. Evans
We prove a result on equilibrium measures for potentials with summable variation on arbitrary subshifts over a countable amenable group. For finite configurations $v$ and $w$, if $v$ is always replaceable by $w$, we obtain a bound on the measure of $
Externí odkaz:
http://arxiv.org/abs/2401.13878
Autor:
Jiang, Yongle, Zhou, Xiaoyan
Let $G$ be $S_{\mathbb{N}}$, the finitary permutation (i.e. permutations with finite support) group on positive integers $\mathbb{N}$. We prove that $G$ has the invariant von Neumann subalgebras rigidity (ISR, for short) property as introduced in Amr
Externí odkaz:
http://arxiv.org/abs/2312.08061
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.