Zobrazeno 1 - 10
of 27
pro vyhledávání: '"airborne point cloud"'
Publikováno v:
International Journal of Applied Earth Observations and Geoinformation, Vol 132, Iss , Pp 104020- (2024)
Three-dimensional laser scanning technology is widely employed in various fields due to its advantage in rapid acquisition of geographic scene structures. Achieving high precision and automated semantic segmentation of three-dimensional point cloud d
Externí odkaz:
https://doaj.org/article/79c305eb97224cebbcdba24b2d221649
Autor:
Miguel Yermo, Ruben Laso, Oscar G. Lorenzo, Tomas F. Pena, Jose C. Cabaleiro, Francisco F. Rivera, David L. Vilarino
Publikováno v:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 17, Pp 10137-10157 (2024)
Powerline inspection and modelization using airborne light detection and ranging (LiDAR) data have been widely studied through the years. However, to the best of our knowledge, the proposed methods rely on intentional flights carried out along the hi
Externí odkaz:
https://doaj.org/article/6b0c101c17b344cbab80c90c8827711f
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 14, Pp 7133-7147 (2021)
Three-dimensional (3-D) plane segmentation has been and continues to be a challenge in 3-D point cloud processing. The current methods typically focus on the planar subsets separation but ignore the requirement of the precise plane fitting. We propos
Externí odkaz:
https://doaj.org/article/bb282431cc7d4ff4a8cf676b84a69f34
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Remote Sensing, Vol 13, Iss 5, p 859 (2021)
Classification of aerial point clouds with high accuracy is significant for many geographical applications, but not trivial as the data are massive and unstructured. In recent years, deep learning for 3D point cloud classification has been actively d
Externí odkaz:
https://doaj.org/article/ea038016124e4059bf49bdb780bc3690
Publikováno v:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 14, Pp 7133-7147 (2021)
Three-dimensional (3-D) plane segmentation has been and continues to be a challenge in 3-D point cloud processing. The current methods typically focus on the planar subsets separation but ignore the requirement of the precise plane fitting. We propos
Publikováno v:
Minerva. Repositorio Institucional de la Universidad de Santiago de Compostela
instname
instname
Determining the optimal path between two points in a 3D point cloud is a problem that have been addressed in many different situations: from road planning and escape routes determination, to network routing and facility layout. This problem is addres
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e4cd36f127fb9ab7d63e49ec4f84828f
https://hdl.handle.net/10347/27904
https://hdl.handle.net/10347/27904
Publikováno v:
Remote Sensing, 13(5)
Remote Sensing, Vol 13, Iss 859, p 859 (2021)
Remote Sensing; Volume 13; Issue 5; Pages: 859
Remote Sensing, Vol 13, Iss 859, p 859 (2021)
Remote Sensing; Volume 13; Issue 5; Pages: 859
Classification of aerial point clouds with high accuracy is significant for many geographical applications, but not trivial as the data are massive and unstructured. In recent years, deep learning for 3D point cloud classification has been actively d