Zobrazeno 1 - 10
of 318
pro vyhledávání: '"airborne point cloud"'
Autor:
Yan, Wanjing1,2,3 (AUTHOR) 1943206000149@ynnu.edu.cn, Ma, Weifeng1,2,3,4,5 (AUTHOR) 2133130005@ynnu.edu.cn, Wu, Xiaodong4,5 (AUTHOR) wc220350@163.com, Wang, Chong4,5 (AUTHOR), Zhang, Jianpeng1,2,3 (AUTHOR) dengyckk@user.ynnu.edu.cn, Deng, Yuncheng1,2,3 (AUTHOR)
Publikováno v:
Sensors (14248220). Nov2024, Vol. 24 Issue 21, p7028. 16p.
Publikováno v:
Sensors, Vol 24, Iss 21, p 7028 (2024)
Point cloud semantic segmentation is crucial for identifying and analyzing transmission lines. Due to the number of point clouds being huge, complex scenes, and unbalanced sample proportion, the mainstream machine learning methods of point cloud segm
Externí odkaz:
https://doaj.org/article/5004bcf5439e4671932f67c0451e6091
Publikováno v:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 16, Pp 141-152 (2023)
Airborne laser scanning (ALS) point cloud classification is a necessary step for understanding 3-D scenes and their applications in various industries. However, the classification accuracy and efficiency are low: 1) point cloud classification methods
Externí odkaz:
https://doaj.org/article/1855bd9e87c34c14a9658090a4834a73
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLIII-B2-2020, Pp 339-346 (2020)
Automation of 3D LiDAR point cloud processing is expected to increase the production rate of many applications including automatic map generation. Fast development on high-end hardware has boosted the expansion of deep learning research for 3D classi
Externí odkaz:
https://doaj.org/article/ecb174caefbc442fa243c479425721d0
Publikováno v:
Applied Sciences, Vol 12, Iss 22, p 11801 (2022)
In point-cloud scenes, semantic segmentation is the basis for achieving an understanding of a 3D scene. The disorderly and irregular nature of 3D point clouds makes it impossible for traditional convolutional neural networks to be applied directly, a
Externí odkaz:
https://doaj.org/article/374a5b3c43424142a4d515479df5dc7f
Publikováno v:
Laser Technology; Sep2024, Vol. 48 Issue 5, p628-636, 9p
Publikováno v:
GIScience & Remote Sensing, Vol 55, Iss 1, Pp 63-89 (2018)
Roof plane segmentation is a complex task since point cloud data carry no connection information and do not provide any semantic characteristics of the underlying scanned surfaces. Point cloud density, complex roof profiles, and occlusion add another
Externí odkaz:
https://doaj.org/article/5e907cd914fc455ebeff6fbe239e28c4
Publikováno v:
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XL-4/W5, Pp 147-152 (2015)
In this work, we concentrate on the hierarchy and completeness of roof topology, and the aim is to avoid or correct the errors in roof topology. The hierarchy of topology is expressed by the hierarchical roof topology graph (HRTG) in accord with the
Externí odkaz:
https://doaj.org/article/795b389d59a04dd1b2dd47eb7e10dc76