Zobrazeno 1 - 10
of 418
pro vyhledávání: '"aerosol effective radiative forcing"'
Autor:
M. W. Christensen, A. Gettelman, J. Cermak, G. Dagan, M. Diamond, A. Douglas, G. Feingold, F. Glassmeier, T. Goren, D. P. Grosvenor, E. Gryspeerdt, R. Kahn, Z. Li, P.-L. Ma, F. Malavelle, I. L. McCoy, D. T. McCoy, G. McFarquhar, J. Mülmenstädt, S. Pal, A. Possner, A. Povey, J. Quaas, D. Rosenfeld, A. Schmidt, R. Schrödner, A. Sorooshian, P. Stier, V. Toll, D. Watson-Parris, R. Wood, M. Yang, T. Yuan
Publikováno v:
Atmospheric Chemistry and Physics, Vol 22, Pp 641-674 (2022)
Aerosol–cloud interactions (ACIs) are considered to be the most uncertain driver of present-day radiative forcing due to human activities. The nonlinearity of cloud-state changes to aerosol perturbations make it challenging to attribute causality i
Externí odkaz:
https://doaj.org/article/b67802aa319b4f9ea1ad4a07bfa66e71
Autor:
Rui-Jin LIU, Hong LIAO
Publikováno v:
Atmospheric and Oceanic Science Letters, Vol 10, Iss 3, Pp 228-234 (2017)
The effective radiative forcing (ERF) and associated surface air temperature change over eastern China are estimated using multi-model results from CMIP5 (Coupled Model Intercomparison Project Phase 5). The model results show that, relative to 1850,
Externí odkaz:
https://doaj.org/article/a91a054d01c74eb28f09b7592f9dcd02
Autor:
Christensen, Matthew W., Gettelman, Andrew, Cermak, Jan, Dagan, Guy, Diamond, Michael, Douglas, Alyson, Feingold, Graham, Glassmeier, Franziska, Goren, Tom, Grosvenor, Daniel P., Gryspeerdt, Edward, Kahn, Ralph, Li, Zhanqing, Ma, Po-Lun, Malavelle, Florent, McCoy, Isabel L., McCoy, Daniel T., McFarquhar, Greg, Mülmenstädt, Johannes, Pal, Sandip, Possner, Anna, Povey, Adam, Quaas, Johannes, Rosenfeld, Daniel, Schmidt, Anja, Schrödner, Roland, Sorooshian, Armin, Stier, Philip, Toll, Velle, Watson-Parris, Duncan, Wood, Robert, Yang, Mingxi, Yuan, Tianle
Aerosol–cloud interactions (ACIs) are considered to be the most uncertain driver of present-day radiative forcing due to human activities. The nonlinearity of cloud-state changes to aerosol perturbations make it challenging to attribute causality i
Externí odkaz:
https://ul.qucosa.de/id/qucosa%3A82040
https://ul.qucosa.de/api/qucosa%3A82040/attachment/ATT-0/
https://ul.qucosa.de/api/qucosa%3A82040/attachment/ATT-0/
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Fan, Jiwen, Shan, Yunpeng, Zhang, Kai, Shpund, Jacob, Easter, Richard, Wang, Hailong, Zhang, Guang, Song, Xiaoliang, Terai, Ryutaro Christopher, Xie, Shaocheng, Liu, Xiaohong
Publikováno v:
XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Radiative forcing by aerosol-cloud interaction (ACI) remains the largest uncertainty in climate projection based on the IPCC AR6 report in 2021. Many Earth system models tend to overestimate aerosol effective radiative forcing (ERFaer) mainly because
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f2a12dea7db2df90aaf0bff36366e646
https://gfzpublic.gfz-potsdam.de/pubman/item/item_5016978
https://gfzpublic.gfz-potsdam.de/pubman/item/item_5016978
Autor:
Hao Wang, Tie Dai, Min Zhao, Daisuke Goto, Qing Bao, Toshihiko Takemura, Teruyuki Nakajima, Guangyu Shi
Publikováno v:
Atmosphere, Vol 11, Iss 10, p 1115 (2020)
The effective radiative forcing (ERF) of anthropogenic aerosol can be more representative of the eventual climate response than other radiative forcing. We incorporate aerosol–cloud interaction into the Chinese Academy of Sciences Flexible Global O
Externí odkaz:
https://doaj.org/article/f5a2216e4bd546c3a84053b05e3dfe1a
Autor:
Christensen MW; Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK.; Atmospheric Science & Global Change Division, Pacific Northwest National Laboratory, Richland, WA 99354, Washington, USA., Gettelman A; National Center for Atmospheric Research, Boulder, CO, USA., Cermak J; Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research, Karlsruhe, Germany.; Karlsruhe Institute of Technology (KIT), Institute of Photogrammetry and Remote Sensing, Karlsruhe, Germany., Dagan G; Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel., Diamond M; Department of Atmospheric Sciences, University of Washington, Seattle, USA.; NOAA Chemical Sciences Laboratory (CSL), Boulder, Colorado, USA.; Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado, USA., Douglas A; Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK., Feingold G; NOAA Chemical Sciences Laboratory (CSL), Boulder, Colorado, USA., Glassmeier F; Department Geoscience and Remote Sensing, Delft University of Technology, P.O. Box 5048, 2600GA Delft, the Netherlands., Goren T; Institute for Meteorology, Universität Leipzig, Leipzig, Germany., Grosvenor DP; National Centre for Atmospheric Sciences, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK., Gryspeerdt E; Space and Atmospheric Physics Group, Imperial College London, London, UK., Kahn R; Earth Science Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA., Li Z; Department of Atmospheric and Oceanic Science, University of Maryland, College Park, USA., Ma PL; Atmospheric Science & Global Change Division, Pacific Northwest National Laboratory, Richland, WA 99354, Washington, USA., Malavelle F; Met Office, Atmospheric Dispersion and Air Quality, Fitzroy Rd, Exeter, EX1 3PB, UK., McCoy IL; Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.; Cooperative Programs for the Advancement of Earth System Science (CPAESS), University Corporation for Atmospheric Research, Boulder, CO, USA., McCoy DT; Department of Atmospheric Sciences, University of Wyoming, Laramie, USA., McFarquhar G; Cooperative Institute for Severe and High Impact Weather Research and Operations (CIWRO) and School of Meteorology, University of Oklahoma, Norman, OK, USA.; School of Meteorology, University of Oklahoma, Norman, OK, USA., Mülmenstädt J; Atmospheric Science & Global Change Division, Pacific Northwest National Laboratory, Richland, WA 99354, Washington, USA., Pal S; Department of Geosciences, Texas Tech University, Lubbock, TX, USA., Possner A; Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany., Povey A; Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK.; National Centre for Earth Observation, University of Oxford, Oxford, OX1 3PU, UK., Quaas J; Institute for Meteorology, Universität Leipzig, Leipzig, Germany., Rosenfeld D; Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel., Schmidt A; Department of Geography, University of Cambridge, Cambridge, UK.; Department of Chemistry, University of Cambridge, Cambridge, UK., Schrödner R; Leibniz Institute for Tropospheric Research, Leipzig, Germany., Sorooshian A; Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA.; Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA., Stier P; Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK., Toll V; Institute of Physics, University of Tartu, Tartu, Estonia., Watson-Parris D; Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK., Wood R; Department of Atmospheric Sciences, University of Washington, Seattle, USA., Yang M; Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK., Yuan T; Joint Center for Earth Systems Technologies, University of Maryland, Baltimore County, Baltimore, MD, USA.; Earth Science Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA.
Publikováno v:
Atmospheric chemistry and physics [Atmos Chem Phys] 2022 Jan; Vol. 22 (1), pp. 641-674. Date of Electronic Publication: 2022 Jan 17.
Publikováno v:
Atmospheric Chemistry and Physics (online). 22(1)
Aerosol-cloud interactions (ACIs) are considered to be the most uncertain driver of present-day radiative forcing due to human activities. The nonlinearity of cloud-state changes to aerosol perturbations make it challenging to attribute causality in
Autor:
Matthew Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel McCoy, Daniel McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, Tianle Yuan
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5b654b280d9db9a8202a6b1d4d05143a
https://doi.org/10.5194/acp-2021-559-supplement
https://doi.org/10.5194/acp-2021-559-supplement