Zobrazeno 1 - 10
of 100
pro vyhledávání: '"Zwanenburg, Floris"'
Autor:
Scappucci, Giordano, Kloeffel, Christoph, Zwanenburg, Floris A., Loss, Daniel, Myronov, Maksym, Zhang, Jian-Jun, De Franceschi, Silvano, Katsaros, Georgios, Veldhorst, Menno
Publikováno v:
Nat Rev Mater (2020)
In the worldwide endeavor for disruptive quantum technologies, germanium is emerging as a versatile material to realize devices capable of encoding, processing, or transmitting quantum information. These devices leverage special properties of the ger
Externí odkaz:
http://arxiv.org/abs/2004.08133
Autor:
Ridderbos, Joost, Brauns, Matthias, Li, Ang, Bakkers, Erik P. A. M., Brinkman, Alexander, van der Wiel, Wilfred G., Zwanenburg, Floris A.
Publikováno v:
Phys. Rev. Materials 3, 084803 (2019)
We present a Josephson junction based on a Ge-Si core-shell nanowire with transparent superconducting Al contacts, a building block which could be of considerable interest for investigating Majorana bound states, superconducting qubits and Andreev (s
Externí odkaz:
http://arxiv.org/abs/1908.07579
Autor:
Ridderbos, Joost, Brauns, Matthias, Shen, Jie, de Vries, Folkert K., Li, Ang, Kölling, Sebastian, Verheijen, Marcel A., Brinkman, Alexander, van der Wiel, Wilfred G., Bakkers, Erik P. A. M., Zwanenburg, Floris A.
We show a hard induced superconducting gap in a Ge-Si nanowire Josephson transistor up to in-plane magnetic fields of $250$ mT, an important step towards creating and detecting Majorana zero modes in this system. A hard induced gap requires a highly
Externí odkaz:
http://arxiv.org/abs/1907.05510
Autor:
Ridderbos, Joost, Brauns, Matthias, Shen, Jie, de Vries, Folkert K., Li, Ang, Bakkers, Erik P. A. M., Brinkman, Alexander, Zwanenburg, Floris A.
Publikováno v:
Adv. Mater. 2018, 1802257
We use a Ge-Si core-shell nanowire to realise a Josephson field-effect transistor with highly transparent contacts to superconducting leads. By changing the electric field we gain access to two distinct regimes not combined before in a single device:
Externí odkaz:
http://arxiv.org/abs/1809.08487
Autor:
Li, Chuan, de Ronde, Bob, de Boer, Jorrit, Ridderbos, Joost, Zwanenburg, Floris, Huang, Yingkai, Golubov, Alexander, Brinkman, Alexander
Publikováno v:
Phys. Rev. Lett. 123, 026802 (2019)
One of the consequences of Cooper pairs having a finite momentum in the interlayer of a Josephson junction, is $\pi$-junction behavior. The finite momentum can either be due to an exchange field in ferromagnetic Josephson junctions, or due to the Zee
Externí odkaz:
http://arxiv.org/abs/1807.07725
We describe important considerations to create top-down fabricated planar quantum dots in silicon, often not discussed in detail in literature. The subtle interplay between intrinsic material properties, interfaces and fabrication processes plays a c
Externí odkaz:
http://arxiv.org/abs/1709.08866
Publikováno v:
Scientific Reports 8, 5690, (2018)
We replace the established aluminium gates for the formation of quantum dots in silicon with gates made from palladium. We study the morphology of both aluminium and palladium gates with transmission electron microscopy. The native aluminium oxide is
Externí odkaz:
http://arxiv.org/abs/1709.07699
Autor:
Amitonov, Sergey V., Spruijtenburg, Paul C., Vervoort, Max W. S., van der Wiel, Wilfred G., Zwanenburg, Floris A.
We report the fabrication and electrical characterization of depletion-mode quantum dots in a two-dimensional hole gas (2DHG) in intrinsic silicon. We use fixed charge in a SiO$_2$/Al$_2$O$_3$ dielectric stack to induce a 2DHG at the Si/SiO$_2$ inter
Externí odkaz:
http://arxiv.org/abs/1709.07361
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Brauns, Matthias, Ridderbos, Joost, Li, Ang, van der Wiel, Wilfred G., Bakkers, Erik P. A. M., Zwanenburg, Floris
Publikováno v:
Applied Physics Letters 109, 143113 (2016)
We define single quantum dots of lengths varying from 60 nm up to nearly half a micron in Ge-Si core-shell nanowires. The charging energies scale inversely with the quantum dot length between 18 and 4 meV. Subsequently, we split up a long dot into a
Externí odkaz:
http://arxiv.org/abs/1610.03558