Zobrazeno 1 - 10
of 64
pro vyhledávání: '"Zvonareva, Alexandra"'
Autor:
Zvonareva, Alexandra
The aim of this short survey is to trace back the ingredients going into the derived equivalence classification of Brauer graph algebras and into the proof of the fact that these algebras are closed under derived equivalence.
Externí odkaz:
http://arxiv.org/abs/2405.05602
We study rank functions on a triangulated category $\mathcal{C}$ via its abelianisation $\operatorname{mod}\mathcal{C}$. We prove that every rank function on $\mathcal{C}$ can be interpreted as an additive function on $\operatorname{mod}\mathcal{C}$.
Externí odkaz:
http://arxiv.org/abs/2209.00898
Autor:
Gratz, Sira, Zvonareva, Alexandra
We classify t-structures and thick subcategories in discrete cluster categories $\mathcal{C}(\mathcal{Z})$ of Dynkin type $A$, and show that the set of all t-structures on $\mathcal{C}(\mathcal{Z})$ is a lattice under inclusion of aisles, with meet g
Externí odkaz:
http://arxiv.org/abs/2110.08606
Autor:
Marks, Frederik, Zvonareva, Alexandra
We explore the interplay between t-structures in the bounded derived category of finitely presented modules and the unbounded derived category of all modules over a coherent ring $A$ using homotopy colimits. More precisely, we show that every interme
Externí odkaz:
http://arxiv.org/abs/2108.00471
Autor:
Opper, Sebastian, Zvonareva, Alexandra
Publikováno v:
Advances in Mathematics, Volume 402 (2022), 108341
We classify Brauer graph algebras up to derived equivalence by showing that the set of derived invariants introduced by Antipov is complete. These algebras first appeared in representation theory of finite groups and can be defined for any suitably d
Externí odkaz:
http://arxiv.org/abs/2103.12049
Let $\mathsf{T}$ be a triangulated category with shift functor $\Sigma \colon \mathsf{T} \to \mathsf{T}$. Suppose $(\mathsf{A},\mathsf{B})$ is a co-t-structure with coheart $\mathsf{S} = \Sigma \mathsf{A} \cap \mathsf{B}$ and extended coheart $\maths
Externí odkaz:
http://arxiv.org/abs/2007.06536
Autor:
Simoes, Raquel Coelho, Pauksztello, David, Simoes, David Ploog with an appendix by Raquel Coelho, Zvonareva, Alexandra
Let $Q$ be an acyclic quiver and $w \geq 1$ be an integer. Let $\mathsf{C}_{-w} (\mathbf{k} Q)$ be the $(-w)$-cluster category of $\mathbf{k} Q$. We show that there is a bijection between simple-minded collections in $\mathsf{D}^b (\mathbf{k} Q)$ lyi
Externí odkaz:
http://arxiv.org/abs/2004.00604
Autor:
Antipov, Mikhail, Zvonareva, Alexandra
In this paper the class of Brauer graph algebras is proved to be closed under derived equivalence. For that we use the rank of the maximal torus of the identity component $Out^0(A)$ of the group of outer automorphisms of a symmetric stably biserial a
Externí odkaz:
http://arxiv.org/abs/1908.09645
Autor:
Saorín, Manuel, Zvonareva, Alexandra
Publikováno v:
Proceedings of the Royal Society of Edinburgh: Section A Mathematics 152 (2022) 209-257
This paper focuses on recollements and silting theory in triangulated categories. It consists of two main parts. In the first part a criterion for a recollement of triangulated subcategories to lift to a torsion torsion-free triple (TTF triple) of am
Externí odkaz:
http://arxiv.org/abs/1809.03243
Autor:
Opper, Sebastian, Zvonareva, Alexandra
Publikováno v:
In Advances in Mathematics 25 June 2022 402