Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Zulkifli Marlah Marlan"'
Publikováno v:
Songklanakarin Journal of Science and Technology (SJST), Vol 44, Iss 6, Pp 1489-1495 (2022)
Taguchi’s T-method is a predictive modeling technique under the Mahalanobis-Taguchi system that is based on the regression principle and robust quality engineering elements to predict future state or unknown outcomes. In enhancing prediction accu
Externí odkaz:
https://doaj.org/article/d5c64317445d422ab4db1226417f27eb
Publikováno v:
Bulletin of Electrical Engineering and Informatics. 11:2828-2835
Analysis of multivariate historical information in predicting future state or unknown outcomes is the core function of Taguchi’s T-method. Introduced by Dr. Genichi Taguchi under Mahalanobis-Taguchi system, the T-method combines regression principl
Autor:
Nolia Harudin, Muhammad Azfar Hazim Norizhar, Zulkifli Marlah Marlan, Farah Elida Binti Selamat
Publikováno v:
2023 International Conference on Smart Computing and Application (ICSCA).
Taguchi’s T-method is a new prediction technique under the MahalanobisTaguchi system to predict unknown output or future states based on available historical information. Conventionally, in optimizing the T-method prediction accuracy, Taguchi’s o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f6c57e5c74e9ac75a3472e54ede8c898
https://zenodo.org/record/6931039
https://zenodo.org/record/6931039
Autor:
Khairur Rijal Jamaludin, Faizir Ramlie, Wan Zuki Azman Wan Muhamad, Mohd Yazid Abu, Nolia Harudin, Zulkifli Marlah Marlan, Mohd Nabil Muhtazaruddin
Publikováno v:
Mathematical Problems in Engineering, Vol 2021 (2021)
Taguchi’s T-Method is one of the Mahalanobis Taguchi System- (MTS-) ruled prediction techniques that has been established specifically but not limited to small, multivariate sample data. The prediction model’s complexity aspect can be further enh
Autor:
Kohei Arai
The book is a valuable collection of papers presented in the Future of Information and Communications Conference (FICC), conducted by Science and Information Organization on 4–5 April 2024 in Berlin. It received a total of 401 paper submissions out