Zobrazeno 1 - 10
of 165
pro vyhledávání: '"Zozor, S."'
We study a version of the generalized (h, {\phi})-entropies, introduced by Salicr\'u et al, for a wide family of probabilistic models that includes quantum and classical statistical theories as particular cases. We extend previous works by exploring
Externí odkaz:
http://arxiv.org/abs/1802.08673
Based on the problem of quantum data compression in a lossless way, we present here an operational interpretation for the family of quantum R\'enyi entropies. In order to do this, we appeal to a very general quantum encoding scheme that satisfies a q
Externí odkaz:
http://arxiv.org/abs/1710.01513
We introduce quantum correlations measures based on the minimal change in unified entropies induced by local rank-one projective measurements, divided by a factor that depends on the generalized purity of the system in the case of non-additive entrop
Externí odkaz:
http://arxiv.org/abs/1604.00329
Publikováno v:
Quantum Inf Process 15, 3393 (2016)
We present a quantum version of the generalized $(h,\phi)$-entropies, introduced by Salicr\'u \textit{et al.} for the study of classical probability distributions. We establish their basic properties, and show that already known quantum entropies suc
Externí odkaz:
http://arxiv.org/abs/1506.02090
We provide a twofold extension of Landau--Pollak uncertainty relations for mixed quantum states and for positive operator-valued measures, by recourse to geometric considerations. The generalization is based on metrics between pure states, having the
Externí odkaz:
http://arxiv.org/abs/1406.3537
We revisit entropic formulations of the uncertainty principle for an arbitrary pair of positive operator-valued measures (POVM) $A$ and $B$, acting on finite dimensional Hilbert space. Salicr\'u generalized $(h,\phi)$-entropies, including R\'enyi and
Externí odkaz:
http://arxiv.org/abs/1311.5602
Publikováno v:
The European Physical Journal B, 87(5): 107, may 2014
In this paper, we propose to mix the approach underlying Bandt-Pompe permutation entropy with Lempel-Ziv complexity, to design what we call Lempel-Ziv permutation complexity. The principle consists of two steps: (i) transformation of a continuous-sta
Externí odkaz:
http://arxiv.org/abs/1310.1379
Publikováno v:
Phys. Rev. A 84 (2011) 056101
We provide an analytical proof of the entropic uncertainty relations presented by de Vicente and Sanchez-Ruiz in [Phys. Rev. A 77, 042110 (2008)] and also show that the replacement of Eq. (27) by Eq. (29) in that reference introduces solutions that d
Externí odkaz:
http://arxiv.org/abs/1112.5967
Autor:
Zozor, S., Vignat, C.
Publikováno v:
Physica A, 375(2): 499-517, march 2007
In this paper we revisit the Bialynicki-Birula & Mycielski uncertainty principle and its cases of equality. This Shannon entropic version of the well-known Heisenberg uncertainty principle can be used when dealing with variables that admit no varianc
Externí odkaz:
http://arxiv.org/abs/math/0605510
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.