Zobrazeno 1 - 10
of 61
pro vyhledávání: '"Zorin, Evgeniy"'
We develop the Mass Transference Principle for rectangles of Wang \& Wu (Math. Ann. 2021) to incorporate the `unbounded' setup; that is, when along some direction the lower order (at infinity) of the side lengths of the rectangles under consideration
Externí odkaz:
http://arxiv.org/abs/2410.18578
We introduce an inhomogeneous variant of Kaufman's measure, with applications to diophantine approximation. In particular, we make progress towards a problem related to Littlewood's conjecture.
Externí odkaz:
http://arxiv.org/abs/2312.15455
Let $T$ be a $d\times d$ matrix with real coefficients. Then $T$ determines a self-map of the $d$-dimensional torus ${\Bbb T}^d={\mathbb{R}}^d/{\Bbb Z}^d$. Let $ \{E_n \}_{n \in \mathbb{N}} $ be a sequence of subsets of ${\Bbb T}^d$ and let $W(T,\{E_
Externí odkaz:
http://arxiv.org/abs/2208.06112
Let $F \subseteq [0,1]$ be a set that supports a probability measure $\mu$ with the property that $ |\widehat{\mu}(t)| \ll (\log |t|)^{-A}$ for some constant $ A > 0 $. Let $\mathcal{A}= (q_n)_{n\in \mathbb{N}} $ be a sequence of natural numbers. If
Externí odkaz:
http://arxiv.org/abs/1906.01151
Publikováno v:
In Advances in Mathematics 15 May 2023 421
Autor:
Badziahin, Dzmitry, Zorin, Evgeniy
We provide a non-trivial measure of irrationality for a class of Mahler numbers defined with infinite products which cover the Thue-Morse constant.
Comment: 24 pages
Comment: 24 pages
Externí odkaz:
http://arxiv.org/abs/1707.06677
Autor:
Adiceam, Faustin, Zorin, Evgeniy
Let $\Sigma_d^{++}$ be the set of positive definite matrices with determinant 1 in dimension $d\ge 2$. Identifying any two $SL_d(\mathbb{Z})$-congruent elements in $\Sigma_d^{++}$ gives rise to the space of reduced quadratic forms of determinant one,
Externí odkaz:
http://arxiv.org/abs/1607.04467
In this paper we develop the convergence theory of simultaneous, inhomogeneous Diophantine approximation on manifolds. A consequence of our main result is that if the manifold $M \subset \mathbb{R}^n$ is of dimension strictly greater than $(n+1)/2$ a
Externí odkaz:
http://arxiv.org/abs/1506.09049
This paper is motivated by recent applications of Diophantine approximation in electronics, in particular, in the rapidly developing area of Interference Alignment. Some remarkable advances in this area give substantial credit to the fundamental Khin
Externí odkaz:
http://arxiv.org/abs/1506.03688
Autor:
Zorin, Evgeniy
La thèse est consacrée aux estimations de multiplicité. Ce type de résultats est utilisé en théorie de la transcendance. A partir des travaux de A. B. Shidlovskii, W.D.Brownawell et D.W.Masser il sont régulièrement utilisés dans les preuves
Externí odkaz:
http://tel.archives-ouvertes.fr/tel-00558073
http://tel.archives-ouvertes.fr/docs/00/55/80/73/PDF/These.pdf
http://tel.archives-ouvertes.fr/docs/00/55/80/73/PDF/These.pdf