Zobrazeno 1 - 10
of 54
pro vyhledávání: '"Zongming Ma"'
Autor:
Cedric Huchuan Xia, Zongming Ma, Rastko Ciric, Shi Gu, Richard F. Betzel, Antonia N. Kaczkurkin, Monica E. Calkins, Philip A. Cook, Angel García de la Garza, Simon N. Vandekar, Zaixu Cui, Tyler M. Moore, David R. Roalf, Kosha Ruparel, Daniel H. Wolf, Christos Davatzikos, Ruben C. Gur, Raquel E. Gur, Russell T. Shinohara, Danielle S. Bassett, Theodore D. Satterthwaite
Publikováno v:
Nature Communications, Vol 9, Iss 1, Pp 1-14 (2018)
Co-morbidity and symptom overlap make it difficult to associate psychiatric disorders with unique neural signatures. Here, the authors use a data-driven approach to show that the symptom dimensions of mood, psychosis, fear and externalizing behavior
Externí odkaz:
https://doaj.org/article/3f26b7217d3b4ddb99ccbd289a6fae95
Autor:
Hongjuan Zhao, Zongming Ma, Robert Tibshirani, John P T Higgins, Börje Ljungberg, James D Brooks
Publikováno v:
PLoS ONE, Vol 4, Iss 6, p e6039 (2009)
Clear cell renal cell carcinoma (ccRCC) is the most common malignancy of the adult kidney and displays heterogeneity in clinical outcomes. Through comprehensive gene expression profiling, we have identified previously a set of transcripts that predic
Externí odkaz:
https://doaj.org/article/574f5d9c0b6b4e9890421c5cecd65105
Autor:
Zongming Ma, Sagnik Nandy
Publikováno v:
IEEE Transactions on Information Theory. 69:3203-3239
In this paper, we study community detection when we observe $m$ sparse networks and a high dimensional covariate matrix, all encoding the same community structure among $n$ subjects. In the asymptotic regime where the number of features $p$ and the n
Autor:
Bokai Zhu, Shuxiao Chen, Yunhao Bai, Han Chen, Guanrui Liao, Nilanjan Mukherjee, Gustavo Vazquez, David R. McIlwain, Alexandar Tzankov, Ivan T. Lee, Matthias S. Matter, Yury Goltsev, Zongming Ma, Garry P. Nolan, Sizun Jiang
Publikováno v:
Nature Methods. 20:304-315
The ability to align individual cellular information from multiple experimental sources is fundamental for a systems-level understanding of biological processes. However, currently available tools are mainly designed for single-cell transcriptomics m
Autor:
Zhaojun Zhang, Divij Mathew, Tristan Lim, Sijia Huang, E. John Wherry, Andy J. Minn, Zongming Ma, Nancy R. Zhang
Data integration to align cells across batches has become a cornerstone of most single cell data analysis pipelines, critically affecting downstream analyses. Yet, when the batches are expected to biologically differ, how much signal is erased during
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::29cb922295af9b887b67ec0b5f92dd9b
https://doi.org/10.1101/2023.05.05.539614
https://doi.org/10.1101/2023.05.05.539614
Autor:
Debapratim Banerjee, Zongming Ma
Publikováno v:
The Annals of Statistics. 50
Autor:
Zongming Ma, Chao Gao
Publikováno v:
Biometrika. 107:281-284
Autor:
Sheng Gao1 SHENGGAO@WHARTON.UPENN.EDU, Zongming Ma1 ZONGMING@WHARTON.UPENN.EDU
Publikováno v:
Journal of Machine Learning Research. 2023, Vol. 24, p1-61. 61p.
Autor:
Bokai Zhu, Shuxiao Chen, Yunhao Bai, Han Chen, Nilanjan Mukherjee, Gustavo Vazquez, David R McIlwain, Alexandar Tzankov, Ivan T Lee, Matthias S Matter, Yury Golstev, Zongming Ma, Garry P Nolan, Sizun Jiang
The ability to align individual cellular information from multiple experimental sources, techniques and systems is fundamental for a true systems-level understanding of biological processes. While single-cell transcriptomic studies have transformed o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e194bd041e15e95d97999afd3420c056
https://doi.org/10.1101/2021.12.03.471185
https://doi.org/10.1101/2021.12.03.471185
Autor:
Chao Gao, Zongming Ma
Publikováno v:
Statist. Sci. 36, no. 1 (2021), 16-33
This paper surveys some recent developments in fundamental limits and optimal algorithms for network analysis. We focus on minimax optimal rates in three fundamental problems of network analysis: graphon estimation, community detection, and hypothesi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::249a0d3646d4eb3253f07a0b388202f5
https://projecteuclid.org/euclid.ss/1608541216
https://projecteuclid.org/euclid.ss/1608541216