Zobrazeno 1 - 10
of 71
pro vyhledávání: '"Zomer, P. J."'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ingla-Aynés, Josep, Guimarães, Marcos H. D., Meijerink, Rick J., Zomer, Paul J., van Wees, Bart J.
We have performed spin and charge transport measurements in dual gated high mobility bilayer graphene encapsulated in hexagonal boron nitride. Our results show spin relaxation lengths $\lambda_s$ up to 13~\textmu m at room temperature with relaxation
Externí odkaz:
http://arxiv.org/abs/1506.00472
Publikováno v:
Journal of Applied Physics 116, 244505 (2014)
Realizing an optimal Schottky interface of graphene on Si is challenging, as the electrical transport strongly depends on the graphene quality and the fabrication processes. Such interfaces are of increasing research interest for integration in diver
Externí odkaz:
http://arxiv.org/abs/1501.00170
Graphene is an interesting material for spintronics, showing long spin relaxation lengths even at room temperature. For future spintronic devices it is important to understand the behavior of the spins and the limitations for spin transport in struct
Externí odkaz:
http://arxiv.org/abs/1412.0943
Autor:
Guimarães, M. H. D., Zomer, P. J., Ingla-Aynés, J., Brant, J. C., Tombros, N., van Wees, B. J.
Publikováno v:
Phys. Rev. Lett. 113, 086602 (2014)
We experimentally study the electronic spin transport in hBN encapsulated single layer graphene nonlocal spin valves. The use of top and bottom gates allows us to control the carrier density and the electric field independently. The spin relaxation t
Externí odkaz:
http://arxiv.org/abs/1406.4656
Publikováno v:
Nano Letters, Article ASAP (2014)
Spin dependent electron transport measurements on graphene are of high importance to explore possible spintronic applications. Up to date all spin transport experiments on graphene were done in a semi-classical regime, disregarding quantum transport
Externí odkaz:
http://arxiv.org/abs/1404.7650
We present a fast method to fabricate high quality heterostructure devices by picking up crystals of arbitrary sizes. Bilayer graphene is encapsulated with hexagonal boron nitride to demonstrate this approach, showing good electronic quality with mob
Externí odkaz:
http://arxiv.org/abs/1403.0399
We performed spin transport measurements on boron nitride based single layer graphene devices with mobilities up to 40 000 cm${^2}$V$^{-1}$s$^{-1}$. We could observe spin transport over lengths up to 20 {\mu}m at room temperature, the largest distanc
Externí odkaz:
http://arxiv.org/abs/1209.1999
Autor:
Guimarães, M. H. D., Veligura, A., Zomer, P. J., Maassen, T., Vera-Marun, I. J., Tombros, N., van Wees, B. J.
We measure spin transport in high mobility suspended graphene (\mu ~ 10^5 cm^2/Vs), obtaining a (spin) diffusion coefficient of 0.1 m^2/s and giving a lower bound on the spin relaxation time (\tau_s ~ 150 ps) and spin relaxation length (\lambda_s=4.7
Externí odkaz:
http://arxiv.org/abs/1207.1572
Autor:
Vera-Marun, I. J., Zomer, P. J., Veligura, A., Guimarães, M. H. D., Visser, L., Tombros, N., van Elferen, H. J., Zeitler, U., van Wees, B. J.
Publikováno v:
Appl. Phys. Lett. 102, 013106 (2013)
The quantum Hall effect is a remarkable manifestation of quantized transport in a two-dimensional electron gas. Given its technological relevance, it is important to understand its development in realistic nanoscale devices. In this work we present h
Externí odkaz:
http://arxiv.org/abs/1112.5462