Zobrazeno 1 - 10
of 4 344
pro vyhledávání: '"Zolotarev, P. A."'
An algorithm is presented to compute Zolotarev rational functions, that is, rational functions $r_n^*$ of a given degree that are as small as possible on one set $E\subseteq\complex\cup\{\infty\}$ relative to their size on another set $F\subseteq\com
Externí odkaz:
http://arxiv.org/abs/2408.14092
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bessmertnyĭ, M. F., Zolotarev, V. A.
For the self-adjoint operator of the $p$th derivative, a system of fundamental solutions is constructed. This system is analogues to the classical system of sines and cosines. The properties of such functions are studied. Classes of self-adjoint boun
Externí odkaz:
http://arxiv.org/abs/2302.01573
Autor:
Mattner, Lutz
The classical Berry-Esseen error bound, for the normal approximation to the law of a sum of independent and identically distributed random variables, is here improved by replacing the standardised third absolute moment by a weak norm distance to norm
Externí odkaz:
http://arxiv.org/abs/2210.04060
Autor:
Kochetkov, Yury
A polynomial $p\in \mathbb{C}[z]$ with three finite values is called the Zolotarev polynomial. For a class of such polynomials with the given degree, given passport and simple critical points we define a \emph{combinatorial moduli space}. A combinato
Externí odkaz:
http://arxiv.org/abs/2208.02069
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Regavim, Shvo
Let $\lambda_k$ denote the $k$-th successive minimum of a lattice $L$. We study properties of the lengths of certain bases of $L$. If $v_1, \dots v_n$ is a basis which is reduced in the sense of Minkowski we show that $\lvert v_k \rvert^2 \leq \frac{
Externí odkaz:
http://arxiv.org/abs/2106.03183
Autor:
Rack, Heinz-Joachim, Vajda, Robert
The problem of determining an explicit one-parameter power form representation of the proper $n$-th degree Zolotarev polynomials on $[-1,1]$ can be traced back to P. L. Chebyshev. It turned out to be complicated, even for small values of $n$. Such a
Externí odkaz:
http://arxiv.org/abs/2002.00503
Publikováno v:
Radioengineering, Vol 30, Iss 2, Pp 364-371 (2021)
The Discrete Zolotarev Transform (DZT) brings an improvement in the field of spectral analysis of non-stationary signals. However, the transformation algorithm called Approximated Discrete Zolotarev Transform (ADZT) suffers from high computational co
Externí odkaz:
https://doaj.org/article/b7eecea028aa49a39d0a963cbf73fa45
By closely following a construction by Ganelius, we construct Faber rational functions that allow us to derive tight and explicit bounds on Zolotarev numbers. We use our results to bound the singular values of matrices, including complex-valued Cauch
Externí odkaz:
http://arxiv.org/abs/1911.11882