Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Zoi Rakopoulou"'
Autor:
Aikaterini, Sakagianni, Georgios, Feretzakis, Dimitris, Kalles, Evangelos, Loupelis, Zoi, Rakopoulou, Ilias, Dalainas, Georgios, Fildisis
Publikováno v:
Studies in health technology and informatics. 295
Multidrug resistant infections in intensive care units represent a worldwide problem with adverse health effects and negative economic implications. As artificial intelligence techniques are increasingly applied in diagnosing, treating, and preventin
Autor:
Georgios, Feretzakis, Aikaterini, Sakagianni, Dimitris, Kalles, Evangelos, Loupelis, Lazaros, Tzelves, Vasileios, Panteris, Rea, Chatzikyriakou, Nikolaos, Trakas, Stavroula, Kolokytha, Polyxeni, Batiani, Zoi, Rakopoulou, Aikaterini, Tika, Stavroula, Petropoulou, Ilias, Dalainas, Vasileios, Kaldis
Publikováno v:
Studies in health technology and informatics. 295
Emergency department (ED) overcrowding is an increasing global problem raising safety concerns for the patients. Elaborating an effective triage system that properly separates patients requiring hospital admission remains difficult. The objective of
Autor:
Aikaterini Sakagianni, Georgios Feretzakis, Dimitris Kalles, Evangelos Loupelis, Zoi Rakopoulou, Ilias Dalainas, Georgios Fildisis
Multidrug resistant infections in intensive care units represent a worldwide problem with adverse health effects and negative economic implications. As artificial intelligence techniques are increasingly applied in diagnosing, treating, and preventin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::82daca7e3b278c3fa8a8453f5b38df0e
https://doi.org/10.3233/shti220757
https://doi.org/10.3233/shti220757
Autor:
Georgios Feretzakis, Aikaterini Sakagianni, Dimitris Kalles, Evangelos Loupelis, Vasileios Panteris, Lazaros Tzelves, Rea Chatzikyriakou, Nikolaos Trakas, Stavroula Kolokytha, Polyxeni Batiani, Zoi Rakopoulou, Aikaterini Tika, Stavroula Petropoulou, Ilias Dalainas, Vasileios Kaldis
Artificial intelligence processes are increasingly being used in emergency medicine, notably for supporting clinical decisions and potentially improving healthcare services. This study investigated demographics, coagulation tests, and biochemical mar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6888559f8c3a9228fb074767f4e20848
https://doi.org/10.3233/shti220751
https://doi.org/10.3233/shti220751
Autor:
Georgios Feretzakis, Aikaterini Sakagianni, Dimitris Kalles, Evangelos Loupelis, Lazaros Tzelves, Vasileios Panteris, Rea Chatzikyriakou, Nikolaos Trakas, Stavroula Kolokytha, Polyxeni Batiani, Zoi Rakopoulou, Aikaterini Tika, Stavroula Petropoulou, Ilias Dalainas, Vasileios Kaldis
Emergency department (ED) overcrowding is an increasing global problem raising safety concerns for the patients. Elaborating an effective triage system that properly separates patients requiring hospital admission remains difficult. The objective of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::83ff9ed4d0fa10c64751012d62b0d9f7
https://doi.org/10.3233/shti220775
https://doi.org/10.3233/shti220775
Autor:
Georgios, Feretzakis, Aikaterini, Sakagianni, Evangelos, Loupelis, Dimitris, Kalles, Vasileios, Panteris, Lazaros, Tzelves, Rea, Chatzikyriakou, Nikolaos, Trakas, Stavroula, Kolokytha, Polyxeni, Batiani, Zoi, Rakopoulou, Aikaterini, Tika, Stavroula, Petropoulou, Ilias, Dalainas, Vasileios, Kaldis
Publikováno v:
Studies in health technology and informatics. 294
The objective of this study was to evaluate the predictive capability of five machine learning models regarding the admission or discharge of emergency department patients. A Random Forest classifier outperformed other models with respect to the area
Autor:
Georgios Feretzakis, Aikaterini Sakagianni, Evangelos Loupelis, Dimitris Kalles, Vasileios Panteris, Lazaros Tzelves, Rea Chatzikyriakou, Nikolaos Trakas, Stavroula Kolokytha, Polyxeni Batiani, Zoi Rakopoulou, Aikaterini Tika, Stavroula Petropoulou, Ilias Dalainas, Vasileios Kaldis
The objective of this study was to evaluate the predictive capability of five machine learning models regarding the admission or discharge of emergency department patients. A Random Forest classifier outperformed other models with respect to the area
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b93367d81d068fa22a5c83a25b526bac
https://doi.org/10.3233/shti220422
https://doi.org/10.3233/shti220422
Autor:
Georgios, Feretzakis, Aikaterini, Sakagianni, Evangelos, Loupelis, Georgios, Karlis, Dimitris, Kalles, Lazaros, Tzelves, Rea, Chatzikyriakou, Nikolaos, Trakas, Stavroula, Petropoulou, Aikaterini, Tika, Zoi, Rakopoulou, Ilias, Dalainas, Vasileios, Kaldis
Publikováno v:
Studies in health technology and informatics. 289
The objective of this study was to establish a machine learning model and to evaluate its predictive capability of admission to the hospital. This observational retrospective study included 3204 emergency department visits to a public tertiary care h
Autor:
Aikaterini, Sakagianni, Georgios, Feretzakis, Georgios, Karlis, Evangelos, Loupelis, Lazaros, Tzelves, Rea, Chatzikyriakou, Nikolaos, Trakas, Eugenia, Karakou, Stavroula, Petropoulou, Aikaterini, Tika, Zoi, Rakopoulou, Ilias, Dalainas, Vasileios, Kaldis
Publikováno v:
Studies in health technology and informatics. 289
Emergency ambulance use is deemed necessary for the transport of acutely ill patients to hospital emergency departments (ED). However, some patients are discharged as they present low acuity or chronic problems and should receive primary healthcare s
Autor:
Aikaterini Sakagianni, Georgios Feretzakis, Georgios Karlis, Evangelos Loupelis, Lazaros Tzelves, Rea Chatzikyriakou, Nikolaos Trakas, Eugenia Karakou, Stavroula Petropoulou, Aikaterini Tika, Zoi Rakopoulou, Ilias Dalainas, Vasileios Kaldis
Emergency ambulance use is deemed necessary for the transport of acutely ill patients to hospital emergency departments (ED). However, some patients are discharged as they present low acuity or chronic problems and should receive primary healthcare s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7ad710f895bd94c1c20c04e3f79189bb
https://doi.org/10.3233/shti210947
https://doi.org/10.3233/shti210947