Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Zohreh Ravanpak"'
Autor:
Janusz Grabowski, Zohreh Ravanpak
Publikováno v:
Differential Geometry and its Applications. 82:101887
We introduce nonassociative geometric objects generalising naturally Lie groupoids and called (smooth) quasiloopoids and loopoids. We prove that the tangent bundles of smooth loopoids are canonically smooth loopoids again (it is nontrivial in the cas
Motivated by properties of higher tangent lifts of geometric structures, we introduce concepts of weighted structures for various geometric objects on a manifold F equipped with a homogeneity structure. The latter is a smooth action on F of the monoi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eb37003e50b6b9a6ceacf65b00857341
Autor:
Zohreh Ravanpak, Janusz Grabowski
In this article we generalize the discrete Lagrangian and Hamiltonian mechanics on Lie groups to non-associative objects generalizing Lie groups (smooth loops). This shows that the associativity assumption is not crucial for mechanics and opens new p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::24760c4cf9423b853ff267b40a9f3470
We study {\em right-invariant (resp., left-invariant) Poisson quasi-Nijenhuis structures} on a Lie group $G$ and introduce their infinitesimal counterpart, the so-called {\em r-qn structures} on the corresponding Lie algebra $\mathfrak g$. We investi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::444c97ab790a8e456246fec0d32cfdb8
http://arxiv.org/abs/1812.11970
http://arxiv.org/abs/1812.11970
Publikováno v:
UVaDOC. Repositorio Documental de la Universidad de Valladolid
instname
Digital.CSIC. Repositorio Institucional del CSIC
instname
Digital.CSIC. Repositorio Institucional del CSIC
25 pags., 1 fig.
Given a LiePoisson completely integrable bi-Hamiltonian system on ℝ, we present a method which allows us to construct, under certain conditions, a completely integrable bi-Hamiltonian deformation of the initial LiePoisson syst
Given a LiePoisson completely integrable bi-Hamiltonian system on ℝ, we present a method which allows us to construct, under certain conditions, a completely integrable bi-Hamiltonian deformation of the initial LiePoisson syst
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cfa2de767174e23d7d039ac442e0b13c
http://hdl.handle.net/10261/163801
http://hdl.handle.net/10261/163801
Publikováno v:
International Journal of Geometric Methods in Modern Physics. 15:1850059
We study right-invariant (resp., left-invariant) Poisson-Nijenhuis structures on a Lie group $G$ and introduce their infinitesimal counterpart, the so-called r-n structures on the corresponding Lie algebra $\mathfrak g$. We show that $r$-$n$ structur