Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Zohra Bendaoud"'
Autor:
Belabbas Madani, Zohra Bendaoud
Publikováno v:
Rendiconti del Circolo Matematico di Palermo Series 2. 72:2103-2110
Autor:
Fatiha BOUABDALLAH, Zohra BENDAOUD
Publikováno v:
Volume: 71, Issue: 3 898-898
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics
In this Erratum we would like to clarify statement and the proof of Theorem 2 in our paper: ”Zero-based invariant subspaces in the Bergman space Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 67(1) (2018), 277-285.”
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2f4f19baf5762f5822e79135e3fd0292
https://dergipark.org.tr/tr/pub/cfsuasmas/issue/72467/1161813
https://dergipark.org.tr/tr/pub/cfsuasmas/issue/72467/1161813
Publikováno v:
Czechoslovak Mathematical Journal. 71:1049-1061
We present sufficient conditions for the existence of pth powers of a quasiho-mogeneous Toeplitz operator Teisθφ, where φ is a radial polynomial function and p, s are natural numbers. A large class of examples is provided to illustrate our results
Autor:
FATIHA, BOUABDALLAH1 f.bouabdallah@lagh-univ.dz, ZOHRA, BENDAOUD1 z.bendaoud@lagh-univ.dz
Publikováno v:
Communications Series A1 Mathematics & Statistics. Jun2017, Vol. 67 Issue 1, p295-303. 9p.
Autor:
Nafissa Saouli, Zohra Bendaoud
Publikováno v:
Volume: 44, Issue: 1 142-151
Turkish Journal of Mathematics
Turkish Journal of Mathematics
In this paper we study when the product of two dilations of truncated Toeplitz operators gives a dilation of a truncated Toeplitz operator. We will use an approach established in a recent paper written by Ko and Lee. This approach allows us to repres
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a137daeef9a2d381d63ffd988b4fdebf
https://dergipark.org.tr/tr/pub/tbtkmath/issue/52139/681791
https://dergipark.org.tr/tr/pub/tbtkmath/issue/52139/681791
Publikováno v:
Archiv der Mathematik. 89:243-253
Let A be a Banach algebra which does not contain any nonzero idempotent element, let γ > 0, and let \(x \in A\). We show that if \(\parallel x \parallel \geq \frac{log(\gamma + 1)}{\gamma},\) then \(\parallel e^{x} - e^{(\gamma+1)x} \parallel \geq \
Publikováno v:
Archiv der Mathematik; Sep2007, Vol. 89 Issue 3, p243-253, 11p