Zobrazeno 1 - 10
of 139
pro vyhledávání: '"Zlatanović, Snežana"'
This paper explores additional properties of some classes of Saphar type operators, namely left Drazin invertible, essentially left Drazin invertible, right Drazin invertible, and essentially right Drazin invertible operators on Banach spaces, buildi
Externí odkaz:
http://arxiv.org/abs/2403.17981
One-sided generalized Drazin-Riesz and one-sided generalized Drazin-meromorphic invertible operators
The aim of this paper is to introduce and study left and right versions of the class of generalized Drazin-Riesz invertible operators, as well as left and right versions of the class of generalized Drazin-meromorphic invertible operators.
Externí odkaz:
http://arxiv.org/abs/2403.12655
Publikováno v:
In Food Chemistry 15 February 2025 465 Part 1
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Let $T$ be a bounded linear operator on a Banach space $X$. We give new necessary and sufficient conditions for $T$ to be Drazin or Koliha-Drazin invertible. All those conditions have the following form: $T$ possesses certain decomposition property a
Externí odkaz:
http://arxiv.org/abs/1912.00435
A bounded linear operator $T$ on a Banach space $X$ is said to be generalized Drazin-meromorphic invertible if there exists a bounded linear operator $S$ acting on $X$ such that $TS=ST$, $STS=S$, $ TST-T$ is meromorphic. We shall say that $T$ admits
Externí odkaz:
http://arxiv.org/abs/1904.04757
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this paper we study operators originated from semi-B-Fredholm theory and as a consequence we get some results regarding boundaries and connected hulls of the corresponding spectra. In particular, we prove that a bounded linear operator $T$ acting
Externí odkaz:
http://arxiv.org/abs/1806.03414
We define here a pseudo B-Fredholm operator as an operator such that 0 is isolated in its essential spectrum, then we prove that an operator $T$ is pseudo- B-Fredholm if and only if $T = R + F$ where $R$ is a Riesz operator and $F$ is a B-Fredholm op
Externí odkaz:
http://arxiv.org/abs/1805.08741
We shall say that a bounded linear operator $T$ acting on a Banach space $X$ admits a generalized Kato-Riesz decomposition if there exists a pair of $T$-invariant closed subspaces $(M,N)$ such that $X=M\oplus N$, the reduction $T_M$ is Kato and $T_N$
Externí odkaz:
http://arxiv.org/abs/1605.02895