Zobrazeno 1 - 10
of 80
pro vyhledávání: '"Zivaljevic, Rade T."'
The Bier sphere $Bier(\mathcal{G}) = Bier(K) = K\ast_\Delta K^\circ$ and the canonical fan $Fan(\Gamma) = Fan(K)$ are combinatorial/geometric companions of a simple game $\mathcal{G} = (P,\Gamma)$ (equivalently the associated simplicial complex $K$),
Externí odkaz:
http://arxiv.org/abs/2309.14848
We prove a relative of the Optimal (Type B)} Colored Tverberg theorem of \v{Z}ivaljevi\'{c} and Vre\'{c}ica which modifies this results in two different ways. (1) Our result is valid if the number of rainbow faces is $q= p^n-1$, where $p$ is a prime.
Externí odkaz:
http://arxiv.org/abs/2211.02078
Autor:
Jevtić, Filip D., Zivaljević, Rade T.
Publikováno v:
Applicable Analysis and Discrete Mathematics, 2023 Apr 01. 17(1), 101-119.
Externí odkaz:
https://www.jstor.org/stable/27281398
Autor:
Jevtić, Filip D., Živaljević, Rade T.
A Bier sphere $Bier(K) = K\ast_\Delta K^\circ$, defined as the deleted join of a simplicial complex and its Alexander dual $K^\circ$, is a purely combinatorial object (abstract simplicial complex). Here we study a hidden geometry of Bier spheres by d
Externí odkaz:
http://arxiv.org/abs/2108.00618
The type A colored Tverberg theorem of Blagojevi\'{c}, Matschke, and Ziegler provides optimal bounds for the colored Tverberg problem, under the condition that the number of intersecting rainbow simplices is a prime number. We extend this result to a
Externí odkaz:
http://arxiv.org/abs/2005.11913
Chessboard complexes and their generalizations, as objects, and Discrete Morse theory, as a tool, are presented as a unifying theme linking different areas of geometry, topology, algebra and combinatorics. Edmonds and Fulkerson bottleneck (minmax) th
Externí odkaz:
http://arxiv.org/abs/2003.04018
We prove a "multiple colored Tverberg theorem" and a "balanced colored Tverberg theorem", by applying different methods, tools and ideas. The proof of the first theorem uses multiple chessboard complexes (as configuration spaces) and Eilenberg-Krasno
Externí odkaz:
http://arxiv.org/abs/2002.09186
Autor:
Jevtić, Filip D., Živaljević, Rade T.
Motivated by classical Euler's $Tonnetz$, we introduce and study the combinatorics and topology of more general simplicial complexes $Tonn^{n,k}(L)$ of "Tonnetz type". Out main result is that for a sufficiently generic choice of parameters the genera
Externí odkaz:
http://arxiv.org/abs/2002.09184
Autor:
Baralic, Djordje, Curien, Pierre-Louis, Milicevic, Marina, Obradovic, Jovana, Petric, Zoran, Zekic, Mladen, Zivaljevic, Rade T.
A formal sequent system dealing with Menelaus' configurations is introduced in this paper. The axiomatic sequents of the system stem from 2-cycles of Delta-complexes. The Euclidean and projective interpretations of the sequents are defined and a soun
Externí odkaz:
http://arxiv.org/abs/1907.02949
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.