Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Zinna, Md. Ali"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Let $R$ be a smooth affine domain of dimension $d\geq 2$ over an infinite perfect field $k$. We establish a morphism from the Euler class group $E^d(R)$ to $Um_{d+1}(R)/E_{d+1}(R)$, the group of elementary orbits of unimodular rows.
Comment: Com
Comment: Com
Externí odkaz:
http://arxiv.org/abs/1712.06162
We prove an analogue of the Affine Horrocks' Theorem for local complete intersection ideals of height $n$ in $R[T]$, where $R$ is a regular domain of dimension $d$, which is essentially of finite type over an infinite perfect field of characteristic
Externí odkaz:
http://arxiv.org/abs/1709.08627
Let $R$ be a regular domain of dimension $d\geq 2$ which is essentially of finite type over an infinite perfect field $k$. We compare the Euler class group $E^d(R)$ with the van der Kallen group $Um_{d+1}(R)/E_{d+1}(R)$. In the case $2R=R$, we define
Externí odkaz:
http://arxiv.org/abs/1701.00509
Autor:
Keshari, Manoj K., Zinna, Md. Ali
Publikováno v:
J, Commut. Algebra 10 (2018), no 3, 359-373
Let $R$ be a Noetherian commutative ring of dimension $n$, $A=R[X_1,\cdots,X_m]$ be a polynomial ring over $R$ and $P$ be a projective $A[T]$-module of rank $n$. Assume that $P/TP$ and $P_f$ both contain a unimodular element for some monic polynomial
Externí odkaz:
http://arxiv.org/abs/1611.02469
Autor:
Keshari, Manoj K., Zinna, Md. Ali
Publikováno v:
J. Pure Appl. Algebra 221 (2017), no 11, 2805-2814
Let $R$ be an affine algebra over an algebraically closed field of characteristic $0$ with dim$(R)=n$. Let $P$ be a projective $A=R[T_1,\cdots,T_k]$-module of rank $n$ with determinant $L$. Suppose $I$ is an ideal of $A$ of height $n$ such that there
Externí odkaz:
http://arxiv.org/abs/1611.02471
Autor:
Keshari, Manoj K., Zinna, Md. Ali
Publikováno v:
J. Pure Appl. Algebra 221 (2017), no 4, 960-970
Let $R$ be a commutative Noetherian ring and $D$ be a discrete Hodge algebra over $R$ of dimension $d>\text{dim}(R)$. Then we show that (i) the top Euler class group $E^d(D)$ of $D$ is trivial. (ii) if $d>\text{dim}(R)+1$, then $(d-1)$-st Euler class
Externí odkaz:
http://arxiv.org/abs/1611.02468
Autor:
KESHARI, MANOJ K., ZINNA, MD. ALI
Publikováno v:
Journal of Commutative Algebra, 2018 Oct 01. 10(3), 359-373.
Externí odkaz:
https://www.jstor.org/stable/26575817
Autor:
ZINNA, MD. ALI
Publikováno v:
Journal of Commutative Algebra, 2018 Oct 01. 10(3), 435-455.
Externí odkaz:
https://www.jstor.org/stable/26575821
Autor:
ZINNA, MD. ALI
Publikováno v:
Journal of Commutative Algebra, 2018 Oct 01. 10(3), 411-433.
Externí odkaz:
https://www.jstor.org/stable/26575820